設(shè)拋物線,
為焦點(diǎn),
為準(zhǔn)線,準(zhǔn)線與
軸交點(diǎn)為
(1)求;
(2)過點(diǎn)的直線與拋物線
交于
兩點(diǎn),直線
與拋物線交于點(diǎn)
.
①設(shè)三點(diǎn)的橫坐標(biāo)分別為
,計(jì)算:
及
的值;
②若直線與拋物線交于點(diǎn)
,求證:
三點(diǎn)共線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
過點(diǎn)的直線
交直線
于
,過點(diǎn)
的直線
交
軸于
點(diǎn),
,
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)設(shè)直線l與相交于不同的兩點(diǎn)
、
,已知點(diǎn)
的坐標(biāo)為(-2,0),點(diǎn)Q(0,
)在線段
的垂直平分線上且
≤4,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系O
中,直線
與拋物線
=2
相交于A、B兩點(diǎn)。
(1)求證:命題“如果直線過點(diǎn)T(3,0),那么
=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、PB與直線l:y=-2分別交于點(diǎn)M、N.
(1)設(shè)直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)如圖7,動(dòng)直線與橢圓
有且僅有一個(gè)公共點(diǎn),點(diǎn)
是直線
上的兩點(diǎn),且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點(diǎn)
與拋物線
的焦點(diǎn)重合,左端點(diǎn)為
(1)求橢圓的方程;
(2)過橢圓的右焦點(diǎn)且斜率為
的直線
被橢圓
截的弦長
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,以
軸為始邊作兩個(gè)銳角
,它們的終邊分別交單位圓于
兩點(diǎn).已知
兩點(diǎn)的橫坐標(biāo)分別是
,
.
(1)求的值;(2)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,又知此拋物線上一點(diǎn)A(4,m)到焦點(diǎn)的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com