日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓長軸上有一點(diǎn)到兩個焦點(diǎn)之間的距離分別為:3+2,3-2

           (1)求橢圓的方程;

           (2)如果直線x=t(teR)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線

          BD的交點(diǎn)K必在一條確定的雙曲線上;

            (3)過點(diǎn)Q(1,0 )作直線l(與x軸不垂直)與橢圓交于M,N兩點(diǎn),與y軸交于點(diǎn)R,、若

          ,求證:為定值.

           

          【答案】

          (1).(2)直線CA與直線BD的交點(diǎn)K必在雙曲線

          (3)λ+μ=-

          【解析】本試題主要是考查了圓錐曲線方程的求解,以及直線與圓錐曲線的位置關(guān)系的綜合運(yùn)用。

          (1)因為橢圓長軸上有一點(diǎn)到兩個焦點(diǎn)之間的距離分別為:3+2,3-2可知2a=6,a=3,然后結(jié)合a,b,c關(guān)系的得到橢圓的方程;

          (2)因為 直線x=t(teR)與橢圓相交于A,B,若C(-3,0),D(3,0),要證明直線CA與直線BD的交點(diǎn)K必在一條確定的雙曲線上;關(guān)鍵是表示出兩條直線方程,然后得到證明。

          (3)過點(diǎn)Q(1,0 )作直線l(與x軸不垂直)與橢圓交于M,N兩點(diǎn),與y軸交于點(diǎn)R,聯(lián)立方程組和韋達(dá)定理以及向量的關(guān)系式得到參數(shù)的關(guān)系式

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          2
          2
          ,且過點(diǎn)P(2,
          2
          )
          ,設(shè)橢圓的右準(zhǔn)線l與x軸的交點(diǎn)為A,橢圓的上頂點(diǎn)為B,直線AB被以原點(diǎn)為圓心的圓O所截得的弦長為
          4
          5
          5

          (1)求橢圓E的方程及圓O的方程;
          (2)若M是準(zhǔn)線l上縱坐標(biāo)為t的點(diǎn),求證:存在一個異于M的點(diǎn)Q,對于圓O上任意一點(diǎn)N,有
          MN
          NQ
          為定值;且當(dāng)M在直線l上運(yùn)動時,點(diǎn)Q在一個定圓上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2
          (Ⅰ)若橢圓的焦距為2
          3
          ,且兩條準(zhǔn)線間的距離為
          8
          3
          3
          ,求橢圓的方程;
          (Ⅱ)在(I)的條件下,橢圓上有一點(diǎn)M,滿足MF1⊥MF2,求△MF1F2的面積;
          (Ⅲ)過焦點(diǎn)F2作橢圓長軸的垂線與橢圓交于第一象限點(diǎn)P,連接PO并延長交橢圓于點(diǎn)Q,連接QF2并延長交橢圓于點(diǎn)H,若PH⊥PQ,求橢圓的離心率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2010•廣東模擬)已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的上頂點(diǎn)為A(0,1),過C1的焦點(diǎn)且垂直長軸的弦長軸的弦長為1.
          (1)求橢圓C1的方程;
          (2)設(shè)圓O:x2+y2=
          4
          5
          ,過該圓上任意一點(diǎn)作圓的切線l,試證明l和橢圓C1恒有兩個交點(diǎn)A,B,且有
          OA
          OB
          =0
          ;
          (3)在(2)的條件下求弦AB長度的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,并且焦距為2,短軸與長軸的比是
          3
          2

          (1)求橢圓的方程;
          (2)已知橢圓中有如下定理:過橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上任意一點(diǎn)M(x0,y0)的切線唯一,且方程為
          x0x
          a2
          +
          y0y
          b2
          =1
          ,利用此定理求過橢圓的點(diǎn)(1,
          3
          2
          )
          的切線的方程;
          (3)如圖,過橢圓的右準(zhǔn)線上一點(diǎn)P,向橢圓引兩條切線PA,PB,切點(diǎn)為A,B,求證:A,F(xiàn),B三點(diǎn)共線.

          查看答案和解析>>

          同步練習(xí)冊答案