【題目】在平面直角坐標(biāo)系xoy中,已知曲線,直線
過(guò)定點(diǎn)(—2,2),且斜率為
.以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的直角坐標(biāo)方程以及直線l的參數(shù)方程;
(2)點(diǎn)P在曲線上,當(dāng)
時(shí),求點(diǎn)P到直線l的最小距離并求點(diǎn)P的坐標(biāo)
【答案】(1),
;(2)
【解析】
(1)利用同角三角函數(shù)平方關(guān)系,可把曲線C的參數(shù)方程化為普通方程,根據(jù)題意,利用直線所過(guò)的定點(diǎn),以及直線的斜率,結(jié)合直線的參數(shù)方程的形式,求得直線的參數(shù)方程;
(2)應(yīng)用曲線的參數(shù)方程,寫出點(diǎn)P的坐標(biāo),將直線方程化為一般式,應(yīng)用點(diǎn)到直線的距離公式,將距離求出,結(jié)合角的取值范圍,求得其最值,并得到點(diǎn)P的坐標(biāo).
(1);
故直線l的參數(shù)方程為
(2)設(shè)點(diǎn)P,易知直線l:
,則點(diǎn)P則到直線l的距離為
,因?yàn)?/span>
,則
當(dāng)且僅當(dāng)時(shí),P則到直線l的距離最小,
此時(shí),此時(shí)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與
橢圓的一個(gè)交點(diǎn)為
,點(diǎn)
是的焦點(diǎn),且
.
(1)求與
的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),在第一象限內(nèi),橢圓
上是否存在點(diǎn)
,使過(guò)
作
的垂線交拋物線
于
,直線
交
軸于
,且
?若存在,求出點(diǎn)
的坐標(biāo)和
的面積;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,給出下列命題:
①-3是函數(shù)y=f(x)的極值點(diǎn);
②-1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在區(qū)間(-3,1)上單調(diào)遞增;
④y=f(x)在x=0處切線的斜率小于零.
以上正確命題的序號(hào)是( )
A. ①②B. ③④C. ①③D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:,若橢圓上一點(diǎn)與其中心及長(zhǎng)軸一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)如圖,若直線l與橢圓相交于AB且AB是圓的一條直徑,求橢圓E的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在等腰梯形中,
,
,
,
,
=60°,沿
,
折成三棱柱
.
(1)若,
分別為
,
的中點(diǎn),求證:
∥平面
;
(2)若,求二面角
的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅?zhǔn)悄媳背瘯r(shí)代的偉大科學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理: “冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)乎行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)將曲線繞
軸旋轉(zhuǎn)一周得到的幾何體叫做橢球體,記為
,幾何體
的三視圖如圖所示.根據(jù)祖暅原理通過(guò)考察
可以得到
的體積,則
的體積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)和
(
且為常數(shù)),則下列結(jié)論正確的是( )
A.當(dāng)時(shí),存在實(shí)數(shù)
,使得關(guān)于
的方程
有四個(gè)不同的實(shí)數(shù)根
B.存在,使得關(guān)于
的方程
有三個(gè)不同的實(shí)數(shù)根
C.當(dāng)時(shí),若函數(shù)
恰有
個(gè)不同的零點(diǎn)
、
、
,則
D.當(dāng)時(shí),且關(guān)于
的方程
有四個(gè)不同的實(shí)數(shù)根
、
、
、
,若
在
上的最大值為
,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,且
,
(
).
(1)計(jì)算,
,
,
,并求數(shù)列
的通項(xiàng)公式;
(2)若數(shù)列滿足
,求證:數(shù)列
是等比數(shù)列;
(3)由數(shù)列的項(xiàng)組成一個(gè)新數(shù)列
:
,
,
,
,
,設(shè)
為數(shù)列
的前
項(xiàng)和,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人玩一種游戲,每次由甲、乙各出1到5根手指,若和為偶數(shù)算甲贏,否則算乙贏.
(1)若以表示和為6的事件,求
;
(2)現(xiàn)連玩三次,若以表示甲至少贏一次的事件,
表示乙至少贏兩次的事件,試問(wèn)
與
是否為互斥事件?為什么?
(3)這種游戲規(guī)則公平嗎?試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com