日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)且為常數(shù)),則下列結(jié)論正確的是(

          A.當(dāng)時,存在實數(shù),使得關(guān)于的方程有四個不同的實數(shù)根

          B.存在,使得關(guān)于的方程有三個不同的實數(shù)根

          C.當(dāng)時,若函數(shù)恰有個不同的零點、,則

          D.當(dāng)時,且關(guān)于的方程有四個不同的實數(shù)根、、、,若上的最大值為,則

          【答案】ACD

          【解析】

          兩種情況討論,利用數(shù)形結(jié)合思想可判斷出A、B選項的正誤;設(shè),利用復(fù)合函數(shù)的零點可判斷C選項的正誤;求出的值,結(jié)合對稱性可判斷出D選項的正誤.

          ,則函數(shù)在區(qū)間上單調(diào)遞增,

          且當(dāng)時,,如下圖所示:

          如上圖可知,此時關(guān)于的方程根的個數(shù)不大于,B選項不合乎題意;

          ,且當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,此時,

          當(dāng)時,若關(guān)于的方程有四個不同的實數(shù)根,則,解得A選項正確;

          設(shè),由,得

          當(dāng)時,,設(shè)關(guān)于的一元二次方程的兩根分別為、,由于函數(shù)有三個零點,則,,設(shè),

          ,得,由圖象可知,,

          ,則,即,,C選項正確;

          當(dāng)時,若,,

          此時,函數(shù)與函數(shù)在區(qū)間上的兩個交點關(guān)于直線對稱,則.

          如下圖所示,當(dāng)時,函數(shù)與函數(shù)的兩個交點的橫坐標(biāo)、滿足,且有,,則

          ,,由圖象可知,函數(shù)上單調(diào)遞減,在上單調(diào)增,,

          所以,,,則,,

          所以,D選項正確.

          故選:ACD.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機(jī)變量表示該射手一次測試?yán)塾嫷梅,如?/span>的值不低于3分就認(rèn)為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結(jié)果相互獨立。

          (1)如果該射手選擇方案1,求其測試結(jié)束后所得分的分布列和數(shù)學(xué)期望E

          (2)該射手選擇哪種方案通過測試的可能性大?請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

          (Ⅰ)求圓C的極坐標(biāo)方程;

          (Ⅱ)直線l的極坐標(biāo)方程是ρ(sinθ+)=3,射線OM:θ=與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xoy中,已知曲線,直線過定點(—2,2),且斜率為.O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.

          (1)求曲線的直角坐標(biāo)方程以及直線l的參數(shù)方程;

          (2)點P在曲線上,當(dāng)時,求點P到直線l的最小距離并求點P的坐標(biāo)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓和拋物線,在上各取兩個點,這四個點的坐標(biāo)為

          (Ⅰ)求的方程;

          (Ⅱ)設(shè)在第一象限上的點,在點處的切線交于兩點,線段的中點為,過原點的直線與過點且垂直于軸的直線交于點,證明:點在定直線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          (1)當(dāng)時,求函數(shù)的零點個數(shù);

          (2)若,使得,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點、

          1)求以線段、為鄰邊的平行四邊形兩條對角線的長;

          2)設(shè),且,若,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),曲線在點處的切線平行于軸.

          (1)求的單調(diào)區(qū)間;

          (2)證明:當(dāng)時,恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】因市場戰(zhàn)略儲備的需要,某公司日起,每月日購買了相同金額的某種物資,連續(xù)購買了.由于市場變化,日該公司不得不將此物資全部賣出.已知該物資的購買和賣出都是以份為計價單位進(jìn)行交易,且該公司在買賣的過程中沒有虧本,那么下面個折線圖中,所有可以反映這種物資每份價格(單位:萬元)的變化情況的是(

          A.①②B.①③C.②③D.

          查看答案和解析>>

          同步練習(xí)冊答案