日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標系與參數(shù)方程

          已知直線的參數(shù)方程為為參數(shù), ),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為.

          (Ⅰ)討論直線與圓的公共點個數(shù);

          (Ⅱ)過極點作直線的垂線,垂足為,求點的軌跡與圓相交所得弦長.

          【答案】(Ⅰ)見解析;(Ⅱ)點的軌跡與圓相交所得弦長是.

          【解析】試題分析: ()根據(jù)直線參數(shù)方程的幾何意義可知直線式過定點,將極坐標方程化為直角坐標,可知圓心為 ,半徑為 ,動態(tài)討論傾斜角可得結(jié)果;()直線與圓的極坐標方程聯(lián)立,求出極徑,即可得結(jié)果.

          試題解析:(Ⅰ)直線式過定點,傾斜角在內(nèi)的一條直線,

          的方程為,∴當時,直線與圓有1個公共點;

          時,直線與圓有2個公共點

          (Ⅱ)依題意,點在以為直徑的圓上,可得軌跡極坐標方程為.

          聯(lián)立.

          ∴點的軌跡與圓相交所得弦長是.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓 ,過點作圓的切線,切點分別為 ,直線恰好經(jīng)過橢圓的右頂點和上頂點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)如圖,過橢圓的右焦點作兩條互相垂直的弦 ,設(shè) 的中點分別為, ,證明:直線必過定點,并求此定點坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知側(cè)棱垂直于底面的四棱柱中, , ,

          (1)若是線段上的點且滿足,求證:平面平面

          (2)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知:以點 為圓心的圓與軸交于點、,與軸交于點、,其中為原點.

          )求證: 的面積為定值.

          )設(shè)直線與圓交于點、,若,求:圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】平面直角坐標系中,動圓與圓外切,且與直線相切,記圓心的軌跡為曲線.

          (1)求曲線的方程;

          (2)設(shè)過定點為非零常數(shù))的動直線與曲線交于兩點,問:在曲線上是否存在點(與兩點相異),當直線的斜率存在時,直線的斜率之和為定值.若存在,求出點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=2sin2 +x)﹣ cos2x,
          (1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
          (2)當x 時,求f(x)的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】有下列說法:
          ①y=sinx+cosx在區(qū)間(﹣ , )內(nèi)單調(diào)遞增;
          ②存在實數(shù)α,使sinαcosα=
          ③y=sin( +2x)是奇函數(shù);
          ④x= 是函數(shù)y=cos(2x+ )的一條對稱軸方程.
          其中正確說法的序號是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,設(shè)函數(shù).

          (1)當時,求的極值點;

          (2)討論在區(qū)間上的單調(diào)性;

          (3)對任意恒成立時, 的最大值為1,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)).

          (Ⅰ)若,求函數(shù)的單調(diào)遞增區(qū)間;

          (Ⅱ)若函數(shù),對于曲線上的兩個不同的點, ,記直線的斜率為,若,證明: .

          查看答案和解析>>

          同步練習冊答案