設(shè)雙曲線的一條漸近線與拋物線y=x2+1只有一個公共點,則雙曲線的離心率為( 。
A.![]() | B.5 | C.![]() | D.![]() |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知直線,圓
.
(Ⅰ)證明:對任意,直線
與圓
恒有兩個公共點.
(Ⅱ)過圓心作
于點
,當(dāng)
變化時,求點
的軌跡
的方程.
(Ⅲ)直線與點
的軌跡
交于點
,與圓
交于點
,是否存在
的值,使得
?若存在,試求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知圓的圓心為
,圓
:
的圓心為
,一動圓與圓
內(nèi)切,與圓
外切.
(Ⅰ)求動圓圓心的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點,使得
為鈍角?若存在,求出點
橫坐標(biāo)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題8分)
已知直線(
為參數(shù)),圓
(
為參數(shù)).
(Ⅰ)當(dāng)時,試判斷直線
與圓
的位置關(guān)系;
(Ⅱ)若直線與圓
截得的弦長為1,求直線
的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知是拋物線
上任意一點,則當(dāng)
點到直線
的距離最小時,
點與該拋物線的準(zhǔn)線的距離是
A.2 | B.1 | C.![]() | D.![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)是關(guān)于t的方程
的兩個不等實根,則過
,
兩點的直線與雙曲線
的公共點的個數(shù)為
A.3 | B.2 | C.1 | D.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C1和拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點,從它們每條曲線上至少取兩個點,將其坐標(biāo)記錄于下表中:
x | 5 | -![]() | 4 | ![]() | ![]() |
y | 2![]() | 0 | -4 | ![]() | -![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
等軸雙曲線C的中心在原點,焦點在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點,|AB|=4,則C的實軸長為( )
A.![]() | B.2![]() | C.4 | D.8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com