【題目】已知圓經(jīng)過
變換后得曲線
.
(1)求的方程;
(2)若為曲線
上兩點,
為坐標(biāo)原點,直線
的斜率分別為
且
,求直線
被圓
截得弦長的最大值及此時直線
的方程.
【答案】(1)(2)直線
被圓
:
截得弦長的最大值為
,
此時,直線的方程為
.
【解析】試題分析:(1)根據(jù)轉(zhuǎn)移法求軌跡方程:將代入
得
,化簡可得
(2)先根據(jù)斜率公式表示
為
,再聯(lián)立直線方程
與橢圓方程,結(jié)合韋達定理可得
,由垂徑定理得圓心到直線
的距離
最小時,弦長最大,而
,因此當(dāng)
時,弦長最大,可得此時直線
的方程.
解:(Ⅰ)將代入
得
,
化簡得,
即為曲線
的方程.
(Ⅱ)設(shè),
,直線
與圓
:
的交點為
.
當(dāng)直線軸時,
,
由得
或
此時可求得.
當(dāng)直線與
軸不垂直時,設(shè)直線
的方程為
,
聯(lián)立消
得
,
,
,
,
所以
,
由得
,
,
此時.
圓:
的圓心到直線
的距離為
,
所以,
得,
所以當(dāng)時,
最大,最大值為
,
綜上,直線被圓
:
截得弦長的最大值為
,
此時,直線的方程為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)在平面直角坐標(biāo)系xOy中,已知兩點和
,動點M滿足
,設(shè)點M的軌跡為C,半拋物線
:
(
),設(shè)點
.
(Ⅰ)求C的軌跡方程;
(Ⅱ)設(shè)點T是曲線上一點,曲線
在點T處的切線與曲線C相交于點A和點B,求△ABD的面積的最大值及點T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.交易會開始前,展館附近一家川菜特色餐廳為了研究參會人數(shù)與餐廳所需原材料數(shù)量的關(guān)系,查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量
(袋),得到如下數(shù)據(jù):
(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于
的線性回歸方程
;
(Ⅱ)已知購買原材料的費用(元)與數(shù)量
(袋)的關(guān)系為
投入使用的每袋原材料相應(yīng)的銷售收入為600元,多余的原材料只能無償返還.若餐廳原材料現(xiàn)恰好用完,據(jù)悉本次交易會大約有14萬人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤
銷售收入
原材料費用).
(參考公式: ,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,直線
的方程為
,點
是拋物線
上到直線
距離最小的點,點
是拋物線上異于點
的點,直線
與直線
交于點
,過點
與
軸平行的直線與拋物線
交于點
.
(1)求點的坐標(biāo);
(2)求證:直線恒過定點
;
(3)在(2)的條件下過向
軸做垂線,垂足為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓臺的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和.
(1)求該圓臺母線的長;
(2)求該圓臺的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是( )
A.
B.2π
C.
D.3π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點.那么異面直線OE和FD1所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=3,BD=4,則三棱錐A﹣BCD外接球的半徑為( 。
A.2
B.3
C.4
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC﹣A′B′C′,側(cè)棱與底面垂直,且所有的棱長均為2,E為AA′的中點,F(xiàn)為AB的中點. (Ⅰ)求多面體ABCB′C′E的體積;
(Ⅱ)求異面直線C'E與CF所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com