日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知中心在原點(diǎn),頂點(diǎn)A1、A2在x軸上,離心率e=
          21
          3
          的雙曲線過(guò)點(diǎn)P(6,6).
          (1)求雙曲線方程.
          (2)動(dòng)直線l經(jīng)過(guò)△A1PA2的重心G,與雙曲線交于不同的兩點(diǎn)M、N,問(wèn):是否存在直線l,使G平分線段MN,證明你的結(jié)論.
          (1)根據(jù)題意,雙曲線的離心率e=
          21
          3
          ,
          c2
          a2
          =
          21
          9
          ,可得
          b2
          a2
          =
          12
          9

          設(shè)雙曲線方程為
          x2
          9
          -
          y2
          12
          =λ,λ≠0;
          由已知,雙曲線過(guò)點(diǎn)P(6,6),
          將其坐標(biāo)代入方程,解可得λ=1,
          則a2=9,b2=12.
          所以所求雙曲線方程為
          x2
          9
          -
          y2
          12
          =1;

          (2)P、A1、A2的坐標(biāo)依次為(6,6)、(3,0)、(-3,0),
          ∴三角形的重心G的坐標(biāo)為(2,2)
          假設(shè)存在直線l,使G(2,2)平分線段MN,
          設(shè)M(x1,y1),N(x2,y2).
          ∴l(xiāng)的方程為y=m(x-2)+2,
          與雙曲線方程聯(lián)立消去y,
          整理得x2-4x+28=0.
          ∵△=16-4×28<0,
          ∴所求直線l不存在.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          AB為雙曲線上的兩個(gè)動(dòng)點(diǎn),滿足。(Ⅰ)求證:為定值; (Ⅱ)動(dòng)點(diǎn)P在線段AB上,滿足,求證:點(diǎn)P在定圓上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知點(diǎn)P(3,0),點(diǎn)A,B分別在x軸負(fù)半軸和y軸上,且 當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí)記點(diǎn)C的軌跡為E.(Ⅰ)求曲線E的方程;(Ⅱ)已知向量為方向向量的直線l交曲線E于不同的兩點(diǎn)M,N,若D(-1,0),的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知為橢圓E的兩個(gè)左右焦點(diǎn),拋物線C以為頂點(diǎn),為焦點(diǎn),設(shè)P為橢圓與拋物線的一個(gè)交點(diǎn),如果橢圓離心率e滿足,則e的值為( )

          M

           
          A.             B.          C.          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知不過(guò)坐標(biāo)原點(diǎn)O的直線L與拋物線y2=2x相交于A、B兩點(diǎn),且OA⊥OB,OE⊥AB于E.
          ①求證:直線L過(guò)定點(diǎn);
          ②求點(diǎn)E的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          若直線mx+ny-5=0與圓x2+y2=5沒(méi)有公共點(diǎn),則過(guò)點(diǎn)P(m,n)的一條直線與橢圓
          x2
          7
          +
          y2
          5
          =1
          的公共點(diǎn)的個(gè)數(shù)是( 。
          A.0B.1C.2D.1或2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓
          x2
          2
          +y2=1,其右焦點(diǎn)為F,直線l經(jīng)過(guò)點(diǎn)F與橢圓交于A,B
          兩點(diǎn),且|AB|=
          4
          2
          3

          (1)求直線l的方程;
          (2)求△OAB的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,P是拋物線C:x2=2y上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),直線l過(guò)點(diǎn)P且與拋物線交于另一點(diǎn)Q,已知P(x1,y1),Q(x2,y2).
          (1)若l經(jīng)過(guò)點(diǎn)F,求弦長(zhǎng)|PQ|的最小值;
          (2)設(shè)直線l:y=kx+b(k≠0,b≠0)與x軸交于點(diǎn)S,與y軸交于點(diǎn)T
          ①求證:
          |ST|
          |SP|
          +
          |ST|
          |SQ|
          =|b|(
          1
          y1
          +
          1
          y2
          )

          ②求
          |ST|
          |SP|
          +
          |ST|
          |SQ|
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          若橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦距為2
          5
          ,且過(guò)點(diǎn)(-3,2),⊙O的圓心為原點(diǎn),直徑為橢圓的短軸,⊙M的方程為(x-8)2+(y-6)2=4,過(guò)⊙M上任一點(diǎn)P作⊙O的切線PA、PB,切點(diǎn)為A、B.
          (1)求橢圓的方程;
          (2)若直線PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),求直線PA的直線方程;
          (3)求
          OA
          OB
          的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案