【題目】已知拋物線和
:
,過拋物線上的一點(diǎn)
,作
的兩條切線,與
軸分別相交于
,
兩點(diǎn).
(Ⅰ)若切線過拋物線的焦點(diǎn),求直線
斜率;
(Ⅱ)求面積的最小值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】試題分析:
(Ⅰ)由拋物線的焦點(diǎn)坐標(biāo)設(shè)切線的方程為:
.利用圓心到直線的距離等于半徑解方程可得
,結(jié)合圖形可知直線
斜率
.
(Ⅱ)設(shè)切線方程為,由點(diǎn)
在直線上,則
,直線與圓相切,則
,據(jù)此可得
,則
,
,而
,
.令
,則
,故
,
的最小值為
.
試題解析:
(Ⅰ)拋物線的焦點(diǎn)為,設(shè)切線
的斜率為
,
則切線的方程為:
,即
.
∴,解得:
.
∵,∴
.
(Ⅱ)設(shè)切線方程為,由點(diǎn)
在直線上得:
①
圓心到切線的距離
,整理得:
②
將①代入②得:③
設(shè)方程的兩個(gè)根分別為,
,由韋達(dá)定理得:
,
,
從而
,
.
記函數(shù),則
,
,
的最小值為
,當(dāng)
取得等號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣畜牧技術(shù)員張三和李四9年來(lái)一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場(chǎng)年養(yǎng)殖數(shù)量y(單位:萬(wàn)只)與相成年份x(序號(hào))的數(shù)據(jù)表和散點(diǎn)圖(如圖所示),根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場(chǎng)的個(gè)數(shù)z(單位:個(gè))關(guān)于x的回歸方程.
(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線性回歸方程(參考統(tǒng)計(jì)量:);
(2)試估計(jì):①該縣第一年養(yǎng)殖山羊多少萬(wàn)只?
②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對(duì)于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在固定壓力差(壓力差為常數(shù))下,當(dāng)氣體通過圓形管道時(shí),其流量速率,(單位:)與管道半徑r(單位:cm)的四次方成正比.
(1)寫出氣體流量速率,關(guān)于管道半徑r的函數(shù)解析式;
(2)若氣體在半徑為3cm的管道中,流量速率為,求該氣體通過半徑為r的管道時(shí),其流量速率v的表達(dá)式;
(3)已知(2)中的氣體通過的管道半徑為5cm,計(jì)算該氣體的流量速率(精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:關(guān)于
的不等式
無(wú)解;命題
:指數(shù)函數(shù)
是
上的增函數(shù).
(1)若命題為真命題,求實(shí)數(shù)
的取值范圍;
(2)若滿足為假命題且
為真命題的實(shí)數(shù)
取值范圍是集合
,集合
,且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,點(diǎn)P是直線
上的一動(dòng)點(diǎn),過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)當(dāng)切線PA的長(zhǎng)度為時(shí),求點(diǎn)P的坐標(biāo);
(2)若的外接圓為圓N,試問:當(dāng)P運(yùn)動(dòng)時(shí),圓N是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)求線段AB長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線
相切,過點(diǎn)
且不垂直于
軸直線
與橢圓
相交于
、
兩點(diǎn)。
(1)求橢圓的方程;
(2)若點(diǎn)關(guān)于
軸的對(duì)稱點(diǎn)是點(diǎn)
,證明:直線
與
軸相交于定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
是邊長(zhǎng)為2的正方形,
,且
,
為
中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求二面角的大小;
(Ⅲ)在線段上是否存在點(diǎn)
,使得點(diǎn)
到平
面的距離為
?若存在,確定點(diǎn)
的位置;
若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com