【題目】如圖,三角形所在的平面與長方形
所在的平面垂直,
.點
是
邊的中點,點
分別在線段
,
上,且
.
(1)證明:;
(2)求二面角的正切值;
(3)求直線與直線PG所成角的余弦值.
【答案】⑴見證明;⑵;⑶
【解析】
(1)由面面垂直的性質(zhì)得到平面
,進(jìn)而得到
.
(2)由二面角的定義可知二面角的平面角為
,在
中求解即可.
(3)將直線與
所成轉(zhuǎn)化為直線
與直線
所成角,利用余弦定理求解.
(1)證明:因為,點
是
中點,所以
.
又因為平面平面
,交線為
,所以
平面
.
又平面
,所以
.
(2)由(1)可知,.
因為四邊形為長方形,所以
.
又因為,所以
平面
.
而平面
,所以
.
由二面角的平面角的定義,可知為二面角
的一個平面角.
在中,
所以
從而二面角的正切值為
.
(3)連接.因為
,所以
.
易求得,
所以直線與直線
所成角等于直線
與直線
所成角,即
,
在中,
所以直線與直線
所成角的余弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)
的圖象在點
處的切線方程;
(2)若函數(shù)的圖象與
軸有且僅有一個交點,求實數(shù)
的值;
(3)在(2)的條件下,對任意的,均有
成立,求正實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4﹣﹣4;坐標(biāo)系與參數(shù)方程
已知動點P,Q都在曲線C: 上,對應(yīng)參數(shù)分別為β=α與β=2α(0<α<2π),M為PQ的中點.
(1)求M的軌跡的參數(shù)方程
(2)將M到坐標(biāo)原點的距離d表示為α的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器注水,當(dāng)球面恰好接觸水面時測得水深為6cm,如不計容器的厚度,則球的體積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:(x+1)2+y2=1,圓N:(x﹣1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當(dāng)圓P的半徑最長時,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自“釣魚島事件”以來,中日關(guān)系日趨緊張并不斷升級.為了積極響應(yīng)“保釣行動”,某學(xué)校舉辦了一場“保釣知識大賽”,共分兩組.其中甲組得滿分的有1個女生和3個男生,乙組得滿分的有2個女生和4個男生.現(xiàn)從得滿分的同學(xué)中,每組各任選1個同學(xué),作為“保釣行動代言人”.
(1)求選出的2個同學(xué)中恰有1個女生的概率;
(2)設(shè)X為選出的2個同學(xué)中女生的個數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 數(shù)列{bn},{cn}滿足 (n+1)bn=an+1﹣ ,(n+2)cn=
﹣
,其中n∈N*.
(1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項公式;
(2)若存在實數(shù)λ,使得對一切n∈N*,有bn≤λ≤cn , 求證:數(shù)列{an}是等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com