已知函數(shù) (
為實(shí)常數(shù))
(1)當(dāng)時(shí),求函數(shù)
在
上的最大值及相應(yīng)的
值;
(2)當(dāng)時(shí),討論方程
根的個(gè)數(shù)
(3)若,且對(duì)任意的
,都有
,求實(shí)數(shù)a的取值范圍
(1)當(dāng)時(shí)
;(2)當(dāng)
時(shí),方程
有2個(gè)相異的根;當(dāng)
或
時(shí),方程
有1個(gè)根;當(dāng)
時(shí),方程
有0個(gè)根;(3)
解析試題分析:(1) 利用導(dǎo)數(shù)求解極值點(diǎn),然后確定單調(diào)性,分析最值;(2)把方程的根轉(zhuǎn)化為函數(shù)圖像的交點(diǎn),利用導(dǎo)數(shù)研究單調(diào)性,進(jìn)而求最值,然后分析交點(diǎn)的情形即根的情形;(3)通過對(duì)函數(shù)單調(diào)性的分析,可得導(dǎo)數(shù)在區(qū)間上大于零恒成立問題,然后轉(zhuǎn)化為最值求解
試題解析:(1),
當(dāng)時(shí),
當(dāng)
時(shí),
,
又,
故,當(dāng)
時(shí),取等號(hào) 4分
(2)易知,故
,
方程根的個(gè)數(shù)等價(jià)于
時(shí),方程
根的個(gè)數(shù)。
設(shè)=
,
當(dāng)時(shí),
,函數(shù)
遞減,
當(dāng)時(shí),
,函數(shù)
遞增。
又,
,作出
與直線
的圖像,由圖像知:
當(dāng)時(shí),即
時(shí),方程
有2個(gè)相異的根;
當(dāng) 或
時(shí),方程
有1個(gè)根;
當(dāng)時(shí),方程
有0個(gè)根; 10分
(3)當(dāng)時(shí),
在
時(shí)是增函數(shù),又函數(shù)
是減函數(shù),不妨設(shè)
,則
等價(jià)于
即,故原題等價(jià)于函數(shù)
在
時(shí)是減函數(shù),
恒成立,即
在
時(shí)恒成立。
在
時(shí)是減函數(shù)
16分
(其他解法酌情給分)
考點(diǎn):導(dǎo)數(shù),函數(shù)的單調(diào)性,函數(shù)的最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若函數(shù)在
處取得極大值,求實(shí)數(shù)a的值;
(3)若,求
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校內(nèi)有一塊以為圓心,
(
為常數(shù),單位為米)為半徑的半圓形(如圖)荒地,該?倓(wù)處計(jì)劃對(duì)其開發(fā)利用,其中弓形
區(qū)域(陰影部分)用于種植學(xué)校觀賞植物,
區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售.已知種植學(xué)校觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元.
(1)設(shè)(單位:弧度),用
表示弓形
的面積
;
(2)如果該校總務(wù)處邀請(qǐng)你規(guī)劃這塊土地,如何設(shè)計(jì)的大小才能使總利潤最大?并求出該最大值.
(參考公式:扇形面積公式,
表示扇形的弧長)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)求的單調(diào)區(qū)間、最大值;
(2)討論關(guān)于的方程
的根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
是常數(shù))在
處的切線方程為
,且
.
(Ⅰ)求常數(shù)的值;
(Ⅱ)若函數(shù)(
)在區(qū)間
內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求的值域;
(2)設(shè),函數(shù)
.若對(duì)任意
,總存在
,使
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)設(shè),試討論
單調(diào)性;
(2)設(shè),當(dāng)
時(shí),若
,存在
,使
,求實(shí)數(shù)
的
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),若
在點(diǎn)
處的切線斜率為
.
(Ⅰ)用表示
;
(Ⅱ)設(shè),若
對(duì)定義域內(nèi)的
恒成立,
(。┣髮(shí)數(shù)的取值范圍;
(ⅱ)對(duì)任意的,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已函數(shù)是定義在
上的奇函數(shù),在
上
.
(1)求函數(shù)的解析式;并判斷
在
上的單調(diào)性(不要求證明);
(2)解不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com