日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•西城區(qū)二模)已知函數(shù)f(x)=
          2ax+a2-1x2+1
          ,其中a∈R.
          (Ⅰ)當a=1時,求曲線y=f(x)在原點處的切線方程;
          (Ⅱ)求f(x)的單調(diào)區(qū)間;
          (Ⅲ)若f(x)在[0,+∞)上存在最大值和最小值,求a的取值范圍.
          分析:(Ⅰ)當a=1時,先對函數(shù)求導(dǎo),然后求出 f'(0),即取消在原點處的切線斜率,可求得曲線y=f(x)在原點處的切線方程
          (Ⅱ)先對函數(shù)求導(dǎo),然后根據(jù)導(dǎo)數(shù)的符號可判斷函數(shù)的單調(diào)區(qū)間
          (III)由(Ⅱ)中函數(shù)的單調(diào)區(qū)間,可求出函數(shù)的最值取得的條件,然后可求a的范圍
          解答:(Ⅰ)解:當a=1時,f(x)=
          2x
          x2+1
          f′(x)=-2
          (x+1)(x-1)
          (x2+1)2
          .    …(2分)
          由 f'(0)=2,得曲線y=f(x)在原點處的切線方程是2x-y=0.…(3分)
          (Ⅱ)解:對函數(shù)求導(dǎo)可得,f(x)=
          -2(x+a)(ax-1)
          (1+x2)2
                                    …(4分)
          ①當a=0時,f′(x)=
          2x
          x2+1

          所以f(x)在(0,+∞)單調(diào)遞增,在(-∞,0)單調(diào)遞減.          …(5分)
          當a≠0,f′(x)=-2a
          (x+a)(x-
          1
          a
          )
          x2+1

          ②當a>0時,令f'(x)=0,得x1=-a,x2=
          1
          a
          ,f(x)與f'(x)的情況如下:
          x (-∞,x1 x1 (x1,x2 x2 (x2,+∞)
          f'(x) - 0 + 0 -
          f(x) f(x1 f(x2
          故f(x)的單調(diào)減區(qū)間是(-∞,-a),(
          1
          a
          ,+∞)
          ;單調(diào)增區(qū)間是(-a,
          1
          a
          )
          .  …(7分)
          ③當a<0時,f(x)與f'(x)的情況如下:
          x (-∞,x2 x2 (x2,x1 x1 (x1,+∞)
          f'(x) + 0 - 0 +
          f(x) f(x2 f(x1
          所以f(x)的單調(diào)增區(qū)間是(-∞,
          1
          a
          )
          ;單調(diào)減區(qū)間是(-
          1
          a
          ,-a)
          ,(-a,+∞).…(9分)
          (Ⅲ)解:由(Ⅱ)得,a=0時不合題意.                       …(10分)
          當a>0時,由(Ⅱ)得,f(x)在(0,
          1
          a
          )
          單調(diào)遞增,在(
          1
          a
          ,+∞)
          單調(diào)遞減,
          所以f(x)在(0,+∞)上存在最大值f(
          1
          a
          )=a2>0

          設(shè)x0為f(x)的零點,易知x0=
          1-a2
          2a
          ,且x0
          1
          a
          .從而x>x0時,f(x)>0;x<x0時,f(x)<0.
          若f(x)在[0,+∞)上存在最小值,必有f(0)≤0,解得-1≤a≤1.
          所以a>0時,若f(x)在[0,+∞)上存在最大值和最小值,a的取值范圍是(0,1].…(12分)
          當a<0時,由(Ⅱ)得,f(x)在(0,-a)單調(diào)遞減,在(-a,+∞)單調(diào)遞增,
          所以f(x)在(0,+∞)上存在最小值f(-a)=-1.
          若f(x)在[0,+∞)上存在最大值,必有f(0)≥0,解得a≥1,或a≤-1.
          所以a<0時,若f(x)在[0,+∞)上存在最大值和最小值,a的取值范圍是(-∞,-1].
          綜上,a的取值范圍是(-∞,-1]∪(0,1].                    …(14分)
          點評:本題主要考查了函數(shù)的導(dǎo)數(shù)的幾何意義的應(yīng)用,導(dǎo)數(shù)在函數(shù)的單調(diào)區(qū)間及函數(shù)的最值求解中的應(yīng)用,屬于中檔試題
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)已知函數(shù)f(x)=cos2(x-
          π
          6
          )-sin2x

          (Ⅰ)求f(
          π
          12
          )
          的值;
          (Ⅱ)若對于任意的x∈[0,
          π
          2
          ]
          ,都有f(x)≤c,求實數(shù)c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
          (Ⅰ)求證:AB⊥DE;
          (Ⅱ)求直線EC與平面ABE所成角的正弦值;
          (Ⅲ)線段EA上是否存在點F,使EC∥平面FBD?若存在,求出
          EFEA
          ;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)對數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個結(jié)論:
          ①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
          ②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
          ③若數(shù)列{an}的通項公式為an=n2,則{an}為3階遞歸數(shù)列.
          其中,正確結(jié)論的個數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)甲、乙兩人參加某種選拔測試.在備選的10道題中,甲答對其中每道題的概率都是
          35
          ,乙能答對其中的5道題.規(guī)定每次考試都從備選的10道題中隨機抽出3道題進行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,至少得15分才能入選.
          (Ⅰ)求乙得分的分布列和數(shù)學(xué)期望;
          (Ⅱ)求甲、乙兩人中至少有一人入選的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西城區(qū)二模)執(zhí)行如圖所示的程序框圖,若輸入如下四個函數(shù):
          ①y=2x;
          ②y=-2x;
          ③f(x)=x+x-1;
          ④f(x)=x-x-1
          則輸出函數(shù)的序號為( 。

          查看答案和解析>>

          同步練習(xí)冊答案