日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)計一個體積為V的圓錐形雪糕筒,要使其側(cè)面積用料最省,則雪粒筒的底面半徑r=
           
          考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
          專題:空間位置關(guān)系與距離
          分析:設(shè)雪粒筒的底面半徑r,高為h,通過V=
          1
          3
          πr2h
          ,求出h的表達(dá)式,求出側(cè)面積,利用均值不等式求出側(cè)面積的最值即可.
          解答: 解:設(shè)雪粒筒的底面半徑r,高為h,則V=
          1
          3
          πr2h
          ,有h=
          3V
          πr2
          ,
          側(cè)面積S=
          1
          2
          ×2πr
          h2+r2
          =πr
          h2+r2
          =πr
          9V2
          π2r4
          +r2

          令f(r)=S2=π2r2(
          9V2
          π2r4
          +r2)

          令t=r2,f(r)=g(t)=π2t2+
          9V2
          t
          (t>0)
          ,
          g(t)=π2t2+
          9V2
          2t
          +
          9V2
          2t
          ≥3
          3π2t2
          9V2
          2t
          9V2
          2t
          =3V
          3
          81π2V
          4
          =
          3V
          2
          162π2V
          ,
          當(dāng)且僅當(dāng)π2t2=
          9V2
          2t
          ,即t=
          3
          9V2
          2π2
          時,g(t)有最小值,
          即r=t=
          6
          9V2
          2π2
          時,f(r)有最小值.
          故答案為:
          3V
          2
          162π2V
          點評:本題考查旋轉(zhuǎn)體的表面積以及基本不等式求解函數(shù)的最值的方法,考查計算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=3sin(2x-
          π
          3
          ),x∈R
          (1)在給定的平面直角坐標(biāo)系中,畫函數(shù)f(x)=3sin(2x-
          π
          3
          ),x∈[0,π]的簡圖;
          (2)求f(x)=3sin(2x-
          π
          3
          ),x∈[-π,0]的單調(diào)增區(qū)間;
          (3)函數(shù)g(x)=3cos2x的圖象只經(jīng)過怎樣的平移變換就可得到f(x)=3sin(2x-
          π
          3
          ),x∈R的圖象?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=1-|x|,函數(shù)g(x)=
          lgx,x>0
          ex,x≤0
          ,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-4,4]內(nèi)的零點個數(shù)是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖是甲、乙兩名同學(xué)三次測驗成績的莖葉圖,則甲、乙兩名同學(xué)中成績更穩(wěn)定的是
           
          .(填“甲”或“乙”)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2-2x-4y-4=0,在圓C上只有兩個點到直線l:x+y+c=0的距離是
          2
          ,則c的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點A(4,2),F(xiàn)為拋物線y2=8x的焦點,點M在拋物線上移動,當(dāng)|MA|+|MF|取最小值時,M點的坐標(biāo)為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若點P(x,y)在曲線
          x=1+
          5
          sinθ
          y=4+
          5
          cosθ
          (θ為參數(shù),θ∈R)上,則
          x+2
          y
          的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知當(dāng)|x|<
          1
          2
          時,有
          1
          1+2x
          =1-2x+4x2-…+(-2x)n+…,根據(jù)以上信息,若對任意|x|<
          1
          2
          ,都有
          x
          (1-x3)(1+2x)
          =a0+a1x+a2x2+…+anxn+…,則a10=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          執(zhí)行如圖所示程序框圖,則輸出的S=( 。
          A、-2014B、2014
          C、-2013D、2013

          查看答案和解析>>

          同步練習(xí)冊答案