已知數(shù)列的各項(xiàng)均為正數(shù),其前
項(xiàng)和為
,且
,
,數(shù)列
是首項(xiàng)和公比均為
的等比數(shù)列.
(1)求證數(shù)列是等差數(shù)列;
(2)若,求數(shù)列
的前
項(xiàng)和
.
(1)證明過(guò)程見(jiàn)試題解析(2)
解析試題分析:(1)由題知可化為
易證數(shù)列
是等差數(shù)列;(2)由
是等差數(shù)列,求出通項(xiàng)公式,進(jìn)而求出
,又據(jù)題意易求得
,知
利用分組求和與錯(cuò)位相減法可求得前n項(xiàng)和
.
試題解析:解:(1)由,得
,又
的各項(xiàng)均為正數(shù),所以
,
,
∵,∴
,∴
,
,
所以數(shù)列是等差數(shù)列;
(2)∵,∴
,
;
∵,
∴,先求數(shù)列
的前
項(xiàng)和
,
∵,
,
∴,
,所以
,∴
。
考點(diǎn):等差,等比數(shù)列的判定,分組求和與錯(cuò)位相減求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列為等差數(shù)列,且
,
,數(shù)列
的前
項(xiàng)和為
,
且
(1)求數(shù)列,
的通項(xiàng)公式;
(2)若,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為
,
(1)證明:數(shù)列是等差數(shù)列,并求
;
(2)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的首項(xiàng)
,公差
,且
、
、
分別是等比數(shù)列
的
、
、
.
(1)求數(shù)列和
的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意正整數(shù)
均有
成立,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列的前n項(xiàng)和為
,且
,
(1).求數(shù)列的通項(xiàng)公式;
(2).若成等比數(shù)列,求正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是首項(xiàng)為
,公比
的等比數(shù)列,設(shè)
.
(1)求證數(shù)列的前n項(xiàng)和
;
(2)若對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為等差數(shù)列,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)記的前
項(xiàng)和為
,若
成等比數(shù)列,求正整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比為q,且0<q<.
(1)在數(shù)列{an}中是否存在三項(xiàng),使其成等差數(shù)列?說(shuō)明理由;
(2)若a1=1,且對(duì)任意正整數(shù)k,ak-(ak+1+ak+2)仍是該數(shù)列中的某一項(xiàng).
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,試用S2011表示T2011.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com