日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=|x﹣2|+2x﹣3,記f(x)≤﹣1的解集為M.
          (Ⅰ)求M;
          (Ⅱ)當(dāng)x∈M時(shí),證明:x[f(x)]2﹣x2f(x)≤0.

          【答案】解:(Ⅰ)由已知,得 ,
          當(dāng)x≤2時(shí),由f(x)=x﹣1≤﹣1,解得,x≤0,此時(shí)x≤0.
          當(dāng)x>2時(shí),由f(x)=3x﹣5≤﹣1,解得 ,顯然不成立,
          故f(x)≤﹣1的解集為M={x|x≤0}.
          (Ⅱ)證明:當(dāng)x∈M時(shí),f(x)=x﹣1,
          于是 ,
          ∵函數(shù) 在(﹣∞,0]上是增函數(shù),∴g(x)≤g(0)=0,
          故x[f(x)]2﹣x2f(x)≤0
          【解析】(Ⅰ)化簡 ,通關(guān)當(dāng)x≤2時(shí),當(dāng)x>2時(shí),分別求解f(x)≤﹣1的解集.(Ⅱ)求出當(dāng)x∈M時(shí),f(x)=x﹣1,化簡x[f(x)]2﹣x2f(x),利用二次函數(shù)的性質(zhì)求解即可.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】銳角△ABC中,其內(nèi)角A、B滿足:2cosA=sinB﹣ cosB.
          (1)求角C的大;
          (2)D為AB的中點(diǎn),CD=1,求△ABC面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】艾薩克牛頓(1643年1月4日﹣1727年3月31日)英國皇家學(xué)會(huì)會(huì)長,英國著名物理學(xué)家,同時(shí)在數(shù)學(xué)上也有許多杰出貢獻(xiàn),牛頓用“作切線”的方法求函數(shù)f(x)零點(diǎn)時(shí)給出一個(gè)數(shù)列{xn}:滿足 ,我們把該數(shù)列稱為牛頓數(shù)列.如果函數(shù)f(x)=ax2+bx+c(a>0)有兩個(gè)零點(diǎn)1,2,數(shù)列{xn}為牛頓數(shù)列,設(shè) ,已知a1=2,xn>2,則{an}的通項(xiàng)公式an=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)g(x)= +g(x).
          (1)試判斷g(x)的單調(diào)性;
          (2)若f(x)在區(qū)間(0,1)上有極值,求實(shí)數(shù)a的取值范圍;
          (3)當(dāng)a>0時(shí),若f(x)有唯一的零點(diǎn)x0 , 試求[x0]的值.(注:[x]為取整函數(shù),表示不超過x的最大整數(shù),如[0.3]=0,[2.6]=2,[﹣1.4]=﹣2;以下數(shù)據(jù)供參考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐S﹣ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形,AB=BC=2,CD=SD=1.
          (Ⅰ)證明:SD⊥平面SAB;
          (Ⅱ)求AB與平面SBC所成的角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一緝私艇巡航至距領(lǐng)海邊界線l(一條南北方向的直線)3.8海里的A處,發(fā)現(xiàn)在其北偏東30°方向相距4海里的B處有一走私船正欲逃跑,緝私艇立即追擊.已知緝私艇的最大航速是走私船最大航速的3倍.假設(shè)緝私艇和走私船均按直線方向以最大航速航行.(參考數(shù)據(jù): °

          (1)若走私船沿正東方向逃離,試確定緝私艇的追擊方向,使得用最短時(shí)間在領(lǐng)海內(nèi)攔截成功;
          (2)問:無論走私船沿何方向逃跑,緝私艇是否總能在領(lǐng)海內(nèi)成功攔截?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)的圖象在點(diǎn)(x0 , f(x0))處的切線方程l:y=g(x),若函數(shù)f(x)滿足x∈I(其中I為函數(shù)f(x)的定義域),當(dāng)x≠x0時(shí),[f(x)﹣g(x)](x﹣x0)>0恒成立,則稱x0為函數(shù)f(x)的“穿越點(diǎn)”.已知函數(shù)f(x)=lnx﹣ x2 在(0,e]上存在一個(gè)“穿越點(diǎn)”,則a的取值范圍為(
          A.[ ,+∞)??
          B.(﹣1, ]??
          C.[﹣ ,1)??
          D.(﹣∞,﹣ ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知D為圓O:x2+y2=8上的動(dòng)點(diǎn),過點(diǎn)D向x軸作垂線DN,垂足為N,T在線段DN上且滿足
          (1)求動(dòng)點(diǎn)T的軌跡方程;
          (2)若M是直線l:x=﹣4上的任意一點(diǎn),以O(shè)M為直徑的圓K與圓O相交于P,Q兩點(diǎn),求證:直線PQ必過定點(diǎn)E,并求出點(diǎn)E的坐標(biāo);
          (3)若(2)中直線PQ與動(dòng)點(diǎn)T的軌跡交于G,H兩點(diǎn),且 ,求此時(shí)弦PQ的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 ,曲線C2的極坐標(biāo)方程為
          (1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
          (2)設(shè)P為曲線C1上一點(diǎn),Q曲線C2上一點(diǎn),求|PQ|的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案