日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題14分)拋物線與直線相交于兩點(diǎn),且
          (1)求的值。
          (2)在拋物線上是否存在點(diǎn),使得的重心恰為拋物線的焦點(diǎn),若存在,求點(diǎn)的坐標(biāo),若不存在,請說明理由。

          (1)(2)存在點(diǎn)滿足要求

          解析試題分析:(1)設(shè),,由直線與拋物線方程聯(lián)立可得:

          ,
          可得
          .                                          ……6分
          (2)假設(shè)存在動點(diǎn),使得的重心恰為拋物線的焦點(diǎn),
          由題意可知,的中點(diǎn)坐標(biāo)為
          由三角形重心的性質(zhì)可知,,
          ,滿足拋物線方程,
          故存在動點(diǎn),使得的重心恰為拋物線的焦點(diǎn) ……………14分
          考點(diǎn):本小題主要考查拋物線的簡單性質(zhì).
          點(diǎn)評:解決直線與圓錐曲線位置關(guān)系的題目,往往離不開聯(lián)立方程組,聯(lián)立方程組后往往利用“設(shè)而不求”的思想方法解題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題12分)已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  
          (I)求橢圓C1的方程;  (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C:=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分15分)
          在平面內(nèi),已知橢圓的兩個(gè)焦點(diǎn)為,橢圓的離心率為 ,點(diǎn)是橢圓上任意一點(diǎn), 且
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)以橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請說明有幾個(gè)、并求出直角邊所在直線方程?若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,是拋物線(為正常數(shù))上的兩個(gè)動點(diǎn),直線AB與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,且

          (Ⅰ)求證:直線AB過拋物線C的焦點(diǎn);
          (Ⅱ)是否存在直線AB,使得若存在,求出直線AB的方程;若不存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分12分)
          已知橢圓的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6。
          (1)求橢圓C的方程;
          (2)設(shè)直線與橢圓C交于A、B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分16分)
          已知橢圓的離心率為,一條準(zhǔn)線

          (1)求橢圓的方程;
          (2)設(shè)O為坐標(biāo)原點(diǎn),上的點(diǎn),為橢圓的右焦點(diǎn),過點(diǎn)FOM的垂線與以OM為直徑的圓交于兩點(diǎn).
          ①若,求圓的方程;
          ②若l上的動點(diǎn),求證:點(diǎn)在定圓上,并求該定圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),
          。
          (1) 求拋物線方程;
          (2) 在x軸上是否存在一點(diǎn)C,使得三角形ABC是正三角形? 若存在,求出點(diǎn)C的坐標(biāo),若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)

          過拋物線焦點(diǎn)垂直于對稱軸的弦叫做拋物線的通徑。如圖,已知拋物線,過其焦點(diǎn)F的直線交拋物線于、 兩點(diǎn)。過、作準(zhǔn)線的垂線,垂足分別為、.

          (1)求出拋物線的通徑,證明都是定值,并求出這個(gè)定值;
          (2)證明: .

          查看答案和解析>>

          同步練習(xí)冊答案