日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點F是PB的中點,點E在邊BC上移動。
          (1)求三棱錐E-PAD的體積;
          (2)點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;
          (3)證明:無論點E在BC邊的何處,都有PE⊥AF.
          (1)解:∵PA⊥底面ABCD,
          ∴PA⊥AD,
          ∴三棱錐E-PAD的體積為。
          (2)解:當點E為BC的中點時,EF與平面PAC平行;
          ∵在△PBC中,E、F分別為BC、PB的中點,
          ∴EF∥PC,
          又EF平面PAC,而PC平面PAC,
          ∴EF∥平面PAC。
          (3)證明:∵PA⊥平面ABCD,BE平面ABCD,
          ∴EB⊥PA,
          又EB⊥AB,AB∩AP=A,AB,AP平面PAB,
          ∴EB⊥平面PAB,
          又AF平面PAB,
          ∴AF⊥BE,
          又PA=AB=1,點F是PB的中點,
          ∴AF⊥PB,
          又∵PB∩BE=B,PB,BE平面PBE,
          ∴AF⊥平面PBE,
          ∵PE平面PBE,
          ∴AF⊥PE。
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
          E是PC的中點.求證:
          (Ⅰ)CD⊥AE;
          (Ⅱ)PD⊥平面ABE.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
          (1)求證:AD⊥PB;
          (2)求三棱錐P-MBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
          2
          ,且側面PAB是正三角形,平面PAB⊥平面ABCD.
          (1)求證:PD⊥AC;
          (2)在棱PA上是否存在一點E,使得二面角E-BD-A的大小為45°,若存在,試求
          AE
          AP
          的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
          3
          ,點F是PB中點.
          (Ⅰ)若E為BC中點,證明:EF∥平面PAC;
          (Ⅱ)若E是BC邊上任一點,證明:PE⊥AF;
          (Ⅲ)若BE=
          3
          3
          ,求直線PA與平面PDE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
          2
          ,設PC與AD的夾角為θ.
          (1)求點A到平面PBD的距離;
          (2)求θ的大;當平面ABCD內有一個動點Q始終滿足PQ與AD的夾角為θ,求動點Q的軌跡方程.

          查看答案和解析>>

          同步練習冊答案