日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB= ,E、F分別為線段PD和BC的中點(diǎn).
          (Ⅰ)求證:CE∥平面PAF;
          (Ⅱ)在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請(qǐng)說明理由.

          【答案】解:(Ⅰ)證明:取PA中點(diǎn)為H,連結(jié)CE、HE、FH,

          ∵H、E分別為PA、PD的中點(diǎn),∴HE∥AD,HE=

          ∵ABCD是平行四邊形,且F為線段BC的中點(diǎn),

          ∴FC∥AD,EC= ,

          ∴HE∥FC,HE=FC,四邊形FCEH是平行四邊形,

          ∴EC∥HF,又∵CE不包含于平面PAF,HF平面PAF,

          ∴CE∥平面PAF.…(4分)

          (Ⅱ)解:∵四邊形ABCD為平行四邊形且∠ACB=90°,

          ∴CA⊥AD,又由平面PAD⊥平面ABCD,

          ∴CA⊥平面PAD,∴CA⊥PA

          由PA=AD=1,PD= 知,PA⊥AD

          ∴建立如圖所示的平面直角坐標(biāo)系A(chǔ)﹣xyz

          ∵PA=BC=1,AB= ,∴AC=1,

          ∴B(1,﹣1,0),C(1,0,0),P(0,0,1),

          假設(shè)BC上存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°,

          設(shè)點(diǎn)G的坐標(biāo)為(1,a,0),﹣1≤a≤0,

          =(0,0,1),

          設(shè)平面PAG的法向量為 =(x,y,z),

          ,令x=a,y=﹣1,z=0,∴ =(a,﹣1,0),

          =(0,b,0), =(﹣1,0,1),

          設(shè)平面PCG的法向量為 =(x,y,z),

          ,令x=1,y=0,z=1,∴ =(1,0,1),…(9分)

          ∵平面PAG和平面PGC所成二面角的大小為60°,

          ∴|cos< >|=| |=

          ∴a=±1,又﹣1≤a≤0,∴a=﹣1,

          所以線段BC上存在一點(diǎn)G,

          使得平面PAG和平面PGC所成二面角的大小為60°

          點(diǎn)G即為B點(diǎn).


          【解析】(1)取PA中點(diǎn)為H,連結(jié)CE、HE、FH,由已知得ABCD是平行四邊形,四邊形FCEH是平行四邊形,由此能證明CE∥平面PAF.(2)由已知得CA⊥AD,CA⊥平面PAD,CA⊥PA,建立平面直角坐標(biāo)系A(chǔ)﹣xyz,利用向量法能求出平面PAG和平面PGC所成二面角的大。
          【考點(diǎn)精析】關(guān)于本題考查的直線與平面平行的判定,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若存在正常數(shù)a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,則稱f(x)為“限增函數(shù)”.給出下列三個(gè)函數(shù):①f(x)=x2+x+1;② ;③f(x)=sin(x2),其中是“限增函數(shù)”的是(
          A.①②③
          B.②③
          C.①③
          D.③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)P在圓C:x2+y2=4上,而Q為P在x軸上的投影,且點(diǎn)N滿足 ,設(shè)動(dòng)點(diǎn)N的軌跡為曲線E.
          (1)求曲線E的方程;
          (2)若A,B是曲線E上兩點(diǎn),且|AB|=2,O為坐標(biāo)原點(diǎn),求△AOB的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將一顆骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為a,第二次出現(xiàn)的點(diǎn)數(shù)記為b,設(shè)兩條直線l1:ax+by=2與l2:x+2y=2平行的概率為P1 , 相交的概率為P2 , 則點(diǎn)P(36P1 , 36P2)與圓C:x2+y2=1098的位置關(guān)系是(
          A.點(diǎn)P在圓C上
          B.點(diǎn)P在圓C外
          C.點(diǎn)P在圓C內(nèi)
          D.不能確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某程序框圖如圖所示,現(xiàn)將輸出(x,y)值依次記為:(x1 , y1),(x2 , y2),…,(xn , yn),…,若程序運(yùn)行中輸出一個(gè)數(shù)組是(x,﹣10),則數(shù)組中的x=(
          A.16
          B.32
          C.64
          D.128

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別為棱BB1、BC的中點(diǎn),則異面直線AB1與EF所成角的大小為(
          A.30°
          B.45°
          C.60°
          D.90°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=lnx﹣ax(a∈R).
          (1)若曲線y=f(x)存在一條切線與直線y=x平行,求a的取值范圍;
          (2)當(dāng)0<a<2時(shí),若f(x)在[a,2]上的最大值為﹣ ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= cos2x﹣2cos2(x+ )+1.
          (Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
          (Ⅱ)求f(x)在區(qū)間[0, ]上的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:(x﹣ 2+(y﹣1)2=1和兩點(diǎn)A(﹣t,0),B(t,0)(t>0),若圓C上存在點(diǎn)P,使得∠APB=90°,則當(dāng)t取得最大值時(shí),點(diǎn)P的坐標(biāo)是(
          A.( ,
          B.( ,
          C.(
          D.( ,

          查看答案和解析>>

          同步練習(xí)冊(cè)答案