日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知p:|1-
          x-1
          3
          | ≤2
          ,q:x2-2x+1-m2≤0(m>0),若¬p¬q的充分不必要條件,則實(shí)數(shù)m的取值范圍是( 。
          分析:根據(jù)絕對值不等式和一元二次不等式的解法,分別解出命題p和q,根據(jù)¬p是¬q的充分不必要條件,可得q⇒p,從而求出m的范圍;
          解答:解:命題p:∵|1-
          x-1
          3
          | ≤2

          ∴-2≤
          4-x
          3
          ≤2
          解得,-2≤x≤10;
          命題q:∵x2-2x+1-m2≤0(m>0)
          ∴1-m≤x≤m+1,
          ∵¬p是¬q的充分不必要條件,
          ∴q是p的充分不必要條件,
          ∴q⇒p,
          1+m≤10
          1-m≥-2
          解得m≤3,∵m>0
          ∴0<m≤3,驗(yàn)證m=3時,命題q:-2≤m≤4,滿足q⇒p,
          ∴m的取值范圍為:0<m≤3;
          故選D.
          點(diǎn)評:此題主要考查一元二次不等式的解法與絕對值不等式的解法,做題時要注意驗(yàn)證m=3是否成立,此題是一道基礎(chǔ)題;
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          8、已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x∈R};P={f(x)|f(1-x)=f(1+x),x∈R};Q={f(x)|f(1-x)=-f(1+x),x∈R};若f(x)=(x-1)3,x∈R,則下列關(guān)系中正確的序列號為:

          ①f(x)∈M②f(x)∈N③f(x)∈P④f(x)∈Q

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知命題p:?x∈[1,12],x2-a≥0.命題q:?x0∈R,使得x
           
          2
          0
          +(a-1)x0+1<0.
          (1)若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍. 
          (2)實(shí)數(shù)m分別取什么值時,復(fù)數(shù)z=m+1+(m-1)i是 ①實(shí)數(shù)?②虛數(shù)?③純虛數(shù)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知p:|1-
          x-13
          |≥2,q:x2-2x+1-m2≥0且m>0,問:是否存在實(shí)數(shù)m,使¬p是¬q的必要而不充分條件?若存在,求出m的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)g(x)=2x+數(shù)學(xué)公式,x∈[數(shù)學(xué)公式,4].
          (1)求g(x)的單調(diào)區(qū)間;(簡單說明理由,不必嚴(yán)格證明)
          (2)證明g(x)的最小值為g(數(shù)學(xué)公式);
          (3)設(shè)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=sinx,x∈[-數(shù)學(xué)公式,數(shù)學(xué)公式],則f1(x)=-1,x∈[-數(shù)學(xué)公式數(shù)學(xué)公式],f2(x)=sinx,x∈[-數(shù)學(xué)公式,數(shù)學(xué)公式],設(shè)φ(x)=數(shù)學(xué)公式+數(shù)學(xué)公式,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市六校高三(上)12月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè)g(x)=2x+,x∈[,4].
          (1)求g(x)的單調(diào)區(qū)間;(簡單說明理由,不必嚴(yán)格證明)
          (2)證明g(x)的最小值為g();
          (3)設(shè)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=sinx,x∈[-,],則f1(x)=-1,x∈[-,],f2(x)=sinx,x∈[-,],設(shè)φ(x)=+,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案