日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)為自然對數(shù)的底數(shù)),的導(dǎo)函數(shù),且.

          1)求實(shí)數(shù)的值;

          2)若函數(shù)處的切線經(jīng)過點(diǎn),求函數(shù)的極值;

          3)若關(guān)于的不等式對于任意的恒成立,求實(shí)數(shù)的取值范圍.

          【答案】1;(2)函數(shù)的極小值為,極大值為;(3.

          【解析】

          1)求出函數(shù)的導(dǎo)數(shù),由,可求出實(shí)數(shù)的值;

          2)利用導(dǎo)數(shù)求出函數(shù)處的切線方程,將點(diǎn)代入切線方程,可求出實(shí)數(shù)的值,然后利用導(dǎo)數(shù)求出函數(shù)的極值點(diǎn),并列表分析函數(shù)的單調(diào)性,由此可得出函數(shù)的極小值和極大值;

          3)方法1:由,得,,然后分兩種情況討論,在時可驗(yàn)證不等式成立,在時,由參變量分離法得,并構(gòu)造函數(shù),并利用導(dǎo)數(shù)求出函數(shù)在區(qū)間上的最小值,由此可得出實(shí)數(shù)的取值范圍;

          方法2:解導(dǎo)數(shù)方程,得出,,然后分,,,五種情況討論,分析函數(shù)在區(qū)間上的單調(diào)性,求出函數(shù)的最大值,再解不等式可得出實(shí)數(shù)的取值范圍.

          1)因?yàn)?/span>,所以,

          又因?yàn)?/span>,所以,解得.

          2)因?yàn)?/span>,所以.

          因?yàn)?/span>,所以.

          因?yàn),函?shù)處的切線方程為且過點(diǎn),

          ,解得.

          因?yàn)?/span>,令,得,列表如下:

          極大值

          極小值

          所以當(dāng)時,函數(shù)取得極小值,

          當(dāng)時,函數(shù)取得極大值為;

          3)方法1:因?yàn)?/span>上恒成立,

          所以上恒成立.

          當(dāng)時,成立;

          當(dāng)時,恒成立,記,

          .

          ,

          ,所以函數(shù)在區(qū)間上單調(diào)遞增,

          所以,即在區(qū)間上恒成立.

          當(dāng),令,得

          所以,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

          所以,所以,,

          因此,實(shí)數(shù)的取值范圍是;

          方法2:由(1)知,

          所以.

          ,得.

          ①當(dāng)時,即時,函數(shù)在區(qū)間上單調(diào)遞減,

          由題意可知,滿足條件;

          ②當(dāng)時,即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

          由題意可知,解得

          ③當(dāng)時,即時,

          函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,

          由題意可知,解得,所以;

          ④當(dāng)時,即時,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

          由題意可知,解得.

          又因?yàn)?/span>,所以

          ⑤當(dāng)時,即時,

          函數(shù)上單調(diào)遞減,上單調(diào)遞增,在上單調(diào)遞減,

          由題意可知,即.

          ,則,設(shè),

          ,所以,函數(shù)在區(qū)間上單調(diào)遞增,

          又因?yàn)?/span>時,,所以在區(qū)間上恒成立,所以.

          綜上,,因此,實(shí)數(shù)的取值范圍是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)當(dāng)時,求上的最小值;

          2)若直線是函數(shù)的切線方程,求實(shí)數(shù)的值;

          3)若,證明:對任意實(shí)數(shù),恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四棱錐中,,底面為菱形,且有,,中點(diǎn).

          (1)證明:;

          (2)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面、分別為、的中點(diǎn).

          1)證明:平面

          2)求幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:

          年 份

          2007

          2008

          2009

          2010

          2011

          2012

          2013

          年份代號t

          1

          2

          3

          4

          5

          6

          7

          人均純收入y

          2.9

          3.3

          3.6

          4.4

          4.8

          5.2

          5.9

          (1)求y關(guān)于t的線性回歸方程;

          (2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.

          附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有一個長方形木塊,三個側(cè)面積分別為8,12,24,現(xiàn)將其削成一個正四面體模型,則該正四面體模型棱長的最大值為(

          A.2B.C.4D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】政府為了穩(wěn)定房價,決定建造批保障房供給社會,計(jì)劃用萬的價格購得一塊建房用地,在該土地上建幢樓房供使用,每幢樓的樓層數(shù)相同且每層建套每套平方米,經(jīng)測算第層每平方米的建筑造價()滿足關(guān)系式(其中為整數(shù)且被整除) ,根據(jù)某工程師的個人測算可知,該小區(qū)只有每幢建層時每平方米平均綜合費(fèi)用才達(dá)到最低,其中每平方米.

          (1)求的值;

          (2)為使該小區(qū)平均每平方米的平均綜合費(fèi)用控制在元以內(nèi),每幢至少建幾層?至多造幾層?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若函數(shù)上遞減,在上遞增,求實(shí)數(shù)的值.

          2)若函數(shù)在定義域上不單調(diào),求實(shí)數(shù)的取值范圍.

          3)若方程有兩個不等實(shí)數(shù)根,求實(shí)數(shù)的取值范圍,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四面體ABCD中,,,二面角的大小為,,

          (1)若,MBC的中點(diǎn),N在線段DC上,,求證:平面AMN;

          (2)當(dāng)BP與平面ACD所成角最大時,求的值.

          查看答案和解析>>

          同步練習(xí)冊答案