日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•湖南)設(shè)Sn為數(shù)列{an}的前n項和,已知a1≠0,2an-a1=S1•Sn,n∈N*
          (Ⅰ)求a1,a2,并求數(shù)列{an}的通項公式;
          (Ⅱ)求數(shù)列{nan}的前n項和.
          分析:(Ⅰ)令n=1和2,代入所給的式子求得a1和a2,當n≥2時再令n=n-1得到2an-1-1=Sn-1,兩個式子相減得an=2an-1,判斷出此數(shù)列為等比數(shù)列,進而求出通項公式;
          (Ⅱ)由(Ⅰ)求出nan=n•2n-1,再由錯位相減法求出此數(shù)列的前n項和.
          解答:解:(Ⅰ)令n=1,得2a1-a1=a12,即a1=a12,
          ∵a1≠0,∴a1=1,
          令n=2,得2a2-1=1+a2,解得a2=2,
          當n≥2時,由2an-1=Sn得,2an-1-1=Sn-1,
          兩式相減得2an-2an-1=an,即an=2an-1
          ∴數(shù)列{an}是首項為1,公比為2的等比數(shù)列,
          ∴an=2n-1,即數(shù)列{an}的通項公式an=2n-1
          (Ⅱ)由(Ⅰ)知,nan=n•2n-1,設(shè)數(shù)列{nan}的前n項和為Tn,
          則Tn=1+2×2+3×22+…+n×2n-1,①
          2Tn=1×2+2×22+3×23+…+n×2n,②
          ①-②得,-Tn=1+2+22+…+2n-1-n•2n
          =2n-1-n•2n,
          ∴Tn=1+(n-1)2n
          點評:本題考查了數(shù)列an與Sn之間的轉(zhuǎn)化,以及由錯位相減法求出數(shù)列的前n項和的應(yīng)用.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•湖南)設(shè)F1,F(xiàn)2是雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)的兩個焦點.若在C上存在一點P.使PF1⊥PF2,且∠PF1F2=30°,則C的離心率為
          3
          +1
          3
          +1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•湖南)設(shè)F1,F(xiàn)2是雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•湖南)設(shè)Sn為數(shù)列{an}的前n項和,Sn=(-1)nan-
          1
          2n
          ,n∈N*,則
          (1)a3=
          -
          1
          16
          -
          1
          16
          ;
          (2)S1+S2+…+S100=
          1
          3
          (
          1
          2100
          -1)
          1
          3
          (
          1
          2100
          -1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•湖南)設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.
          (1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個三角形的三條邊長,且a=b},則(a,b,c)∈M所對應(yīng)的f(x)的零點的取值集合為
          {x|0<x≤1}
          {x|0<x≤1}

          (2)若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是
          ①②③
          ①②③
          .(寫出所有正確結(jié)論的序號)
          ①?x∈(-∞,1),f(x)>0;
          ②?x∈R,使ax,bx,cx不能構(gòu)成一個三角形的三條邊長;
          ③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.

          查看答案和解析>>

          同步練習冊答案