【題目】在某單位的職工食堂中,食堂每天以元/個(gè)的價(jià)格從面包店購(gòu)進(jìn)面包,然后以
元/個(gè)的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的面包以
元/個(gè)的價(jià)格全部賣(mài)給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購(gòu)進(jìn)了80個(gè)面包,以
(單位:個(gè),
)表示面包的需求量,
(單位:元)表示利潤(rùn).
(1)求關(guān)于
的函數(shù)解析式;
(2)根據(jù)直方圖估計(jì)利潤(rùn)不少于
元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若需求量,則取
,且
的概率等于需求量落入
的頻率),求
的分布列和數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ)見(jiàn)解析.
【解析】
試題(Ⅰ)由題意,當(dāng)時(shí),利潤(rùn)
,當(dāng)
時(shí),利潤(rùn)
,即可得到利潤(rùn)的表達(dá)式.
(Ⅱ)由題意,設(shè)利潤(rùn)不少于100元為事件
,由(Ⅰ)知和直方圖可知,即可求解概率.
(III)由題意,由于,
,
,
可得利潤(rùn)的取值,求得各個(gè)取值的概率,即可列出分布列,求得數(shù)學(xué)期望.
試題解析:
(Ⅰ)由題意,當(dāng)時(shí),利潤(rùn)
,
當(dāng)時(shí),利潤(rùn)
,
即
(Ⅱ)由題意,設(shè)利潤(rùn)不少于100元為事件
,由(Ⅰ)知,利潤(rùn)
不少于100元時(shí),即
,
,即
,
由直方圖可知,當(dāng)時(shí),所求概率:
(III)由題意,由于
,
,
,
故利潤(rùn)的取值可為:
,
,
,
,
且,
,
,
,
故的分布列為:
利潤(rùn)的數(shù)學(xué)期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校高中男生中隨機(jī)選取100名學(xué)生,將他們的體重(單位: )數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.
(1)估計(jì)該校的100名同學(xué)的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點(diǎn)值作代表);
(2)若要從體重在,
,
三組內(nèi)的男生中,用分層抽樣的方法選取6人組成一個(gè)活動(dòng)隊(duì),再?gòu)倪@6人中選2人當(dāng)正副隊(duì)長(zhǎng),求這2人中至少有1人體重在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)做促銷(xiāo)活動(dòng),凡是一家三口一起來(lái)商場(chǎng)購(gòu)物的家庭,均可參加返現(xiàn)活動(dòng),活動(dòng)規(guī)則如下:商家在箱中裝入20個(gè)大小相同的球,其中6個(gè)是紅球,其余都是黑球;每個(gè)家庭只能參加一次活動(dòng),參加活動(dòng)的三口人,每人從中任取一球,只能取一次,且每人取球后均放回;若取到黑球則獲得4元返現(xiàn)金,若取到紅球則獲得12元返現(xiàn)金.若某家庭參與了該活動(dòng),則該家庭獲得的返現(xiàn)金額的期望是( ).
A. 22.4 B. 21.6 C. 20.8 D. 19.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線(xiàn)
的焦點(diǎn).
(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,﹣3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線(xiàn)PQ兩側(cè)的動(dòng)點(diǎn),若直線(xiàn)AB的斜率為,求四邊形APBQ面積的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,底面為正三角形,側(cè)棱垂直于底面,
.若
是棱
上的點(diǎn),且
,則異面直線(xiàn)
與
所成角的余弦值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為弘揚(yáng)優(yōu)良傳統(tǒng),展示80年來(lái)的辦學(xué)成果,特舉辦“建校80周年教育成果展示月”活動(dòng),F(xiàn)在需要招募活動(dòng)開(kāi)幕式的志愿者,在眾多候選人中選取100名志愿者,為了在志愿者中選拔出節(jié)目主持人,現(xiàn)按身高分組,得到的頻率分布表如圖所示
(1)請(qǐng)補(bǔ)充頻率分布表中空白位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
(2)為選拔出主持人,決定在第3、4、5組中用分層抽樣抽取6人上臺(tái),求第3、4、5組每組各抽取多少人?
(3)在(2)的前提下,主持人會(huì)在上臺(tái)的6人中隨機(jī)抽取2人表演詩(shī)歌朗誦,求第3組至少有一人被抽取的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是奇函數(shù)
的導(dǎo)函數(shù),
,當(dāng)
時(shí),
,則使得
成立的
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,
和
是邊長(zhǎng)為
的等邊三角形,
,
分別是
的中點(diǎn).
(1)求證: 平面
;
(2)求證: 平面
;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知五邊形是由直角梯形
和等腰直角三角形
構(gòu)成,如圖所示,
,
,
,且
,將五邊形
沿著
折起,且使平面
平面
.
(Ⅰ)若為
中點(diǎn),邊
上是否存在一點(diǎn)
,使得
平面
?若存在,求
的值;若不存在,說(shuō)明理由;
(Ⅱ)求二面角的平面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com