【題目】在三棱錐中,
和
是邊長為
的等邊三角形,
,
分別是
的中點.
(1)求證: 平面
;
(2)求證: 平面
;
(3)求三棱錐的體積.
【答案】(1)見解析(2)見解析(3).
【解析】試題分析:(1)欲證OD∥平面PAC,根據(jù)直線與平面平行的判定定理可知只需證OD與平面PAC內(nèi)一直線平行,而OD∥PA,PA平面PAC,OD平面PAC,滿足定理條件; (2)欲證平面PAB⊥平面ABC,根據(jù)面面垂直的判定定理可知在平面PAB內(nèi)一直線與平面ABC垂直,而根據(jù)題意可得PO⊥平面ABC;
(3)根據(jù)OP垂直平面ABC得到OP為三棱錐P-ABC的高,根據(jù)三棱錐的體積公式可求出三棱錐P-ABC的體積.又因為D為PB中點,所以高是PO的一半.
試題解析:(1)∵分別為
的中點,
∴.
又平面
,
平面
,
∴平面
.
(2)連接,∵
為
中點,
,
∴.
同理, .
又,
∴,
∴.
∴.
∵,
∴平面
.
(3)由(2)可知平面
,
∴為三棱錐
的高,且
.
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
有一個零點為4,且滿足
.
(1)求實數(shù)和
的值;
(2)試問:是否存在這樣的定值,使得當(dāng)
變化時,曲線
在點
處的切線互相平行?若存在,求出
的值;若不存在,請說明理由;
(3)討論函數(shù)在
上的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形ABCD,AB∥CD,且AB=AD=2,CD=3.
(1)用向量 、
表示向量
;
(2)若AD⊥AB,求向量 、
夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人約定在下午 4:30:5:00 間在某地相見,且他們在 4:30:5:00 之間 到達(dá)的時刻是等可能的,約好當(dāng)其中一人先到后一定要等另一人 20 分鐘,若另一人仍不到則可以離去,則這兩人能相見的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(其中
為參數(shù)).以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線
的極坐標(biāo)方程為
.
(1)把曲線的方程化為普通方程,
的方程化為直角坐標(biāo)方程;
(2)若曲線,
相交于
兩點,
的中點為
,過點
做曲線
的垂線交曲線
于
兩點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.
(1)求角B的大小;
(2)若△ABC的面積為,求sinA+sinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,已知四棱錐,底面
為菱形,
,
,
平面
,
分別是
的中點。
(1)證明: ;
(2)若為
上的動點,
與平面
所成最大角
的正切值為,求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有4個編號依次為1、2、3、4的球,這4個球除號碼外完全相同,先從盒子中隨機(jī)取一個球,該球的編號為X,將球放回袋中,然后再從袋中隨機(jī)取一個球,該球的編號為Y
(1)列出所有可能結(jié)果.
(2)求事件A=“取出球的號碼之和小于4”的概率.
(3)求事件B=“編號X<Y”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x3+(k﹣1)x2+(k+5)x﹣1在區(qū)間(0,2)上不單調(diào),則實數(shù)k的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com