【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態(tài)度,責成人社部進行調(diào)研.人社部從網(wǎng)上年齡在15∽65歲的人群中隨機調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結果如下:
年齡 | |||||
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;
45歲以下 | 45歲以上 | 總計 | |
支持 | |||
不支持 | |||
總計 |
(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人
①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機變量
的分布列及數(shù)學期望.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中
【答案】(1)能(2)①②見解析
【解析】分析:(1)由統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,計算觀測值,對照臨界值得出結論;
(2)①求抽到1人是45歲以下的概率,再求抽到1人是45歲以上的概率,
②根據(jù)題意知的可能取值,計算對應的概率值,寫出隨機變量
的分布列,計算數(shù)學期望值.
詳解:(1)由頻率分布直方圖知45歲以下與45歲以上各50人,故填充列聯(lián)表如下:
45歲以下 | 45歲以上 | 總計 | |
支持 | 35 | 45 | 80 |
不支持 | 15 | 5 | 20 |
總計 | 50 | 50 | 100 |
因為的觀測值
,
所以在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異.
(2)①抽到1人是45歲以下的概率為,抽到1人是45歲以下且另一人是45歲以上的概率為
,故所求概率
.
②從不支持“延遲退休”的人中抽取8人,則45歲以下的應抽6人,45歲以上的應抽2人.所以的可能取值為0,1,2.
,
,
.
故隨機變量的分布列為:
0 | 1 | 2 | |
所以.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓E: (a>b>0)的離心率為
,焦距為2.
(1)求橢圓E的方程;
(2)如圖,動直線l:y=k1x-交橢圓E于A,B兩點,C是橢圓E上一點,直線OC的斜率為k2,且k1k2=
.M是線段OC延長線上一點,且|MC|∶|AB|=2∶3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T.求∠SOT的最大值,并求取得最大值時直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(ωx+φ)圖象上的任意兩點,且角φ的終邊經(jīng)過點
,若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為
.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,OB、CD是兩條互相平行的筆直公路,且均與筆直公路OC垂直(公路寬度忽略不計),半徑OC=1千米的扇形COA為該市某一景點區(qū)域,當?shù)卣疄榫徑饩包c周邊的交通壓力,欲在圓弧AC上新增一個入口E(點E不與A、C重合),并在E點建一段與圓弧相切(E為切點)的筆直公路與OB、CD分別交于M、N.當公路建成后,計劃將所圍成的區(qū)域在景點之外的部分建成停車場(圖中陰影部分),設∠CON=θ,停車場面積為S平方千米.
(1)求函數(shù)S=f(θ)的解析式,并寫出函數(shù)的定義域;
(2)為對該計劃進行可行性研究,需要預知所建停車場至少有多少面積,請計算當θ為何值時,S有最小值,并求出該最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐中,底面
是邊長為
的菱形,側面
底面
,
,
,
是
中點,點
在側棱
上.
(Ⅰ)求證: ;
(Ⅱ)若是
中點,求二面角
的余弦值;
(Ⅲ)是否存在,使
平面
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點
,圓
,點
是圓上一動點,線段
的中垂線與線段
交于點
.
(1)求動點的軌跡
的方程;
(2)若直線與曲線
相交于
兩點,且存在點
(其中
不共線),使得
被
軸平分,證明:直線
過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盒子里放有外形相同且編號為1,2,3,4,5的五個小球,其中1號與2號是黑球,3號、4號與5號是紅球,從中有放回地每次取出1個球,共取兩次.
(1)求取到的2個球中恰好有1個是黑球的概率;
(2)求取到的2個球中至少有1個是紅球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱臺的上下底面分別是邊長為2和4的正方形,
= 4且
⊥底面
,點
為
的中點.
(Ⅰ)求證: 面
;
(Ⅱ)在邊上找一點
,使
∥面
,
并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象為不間斷的曲線,定義域為
,規(guī)定:
①如果對于任意,
都有
,則稱函數(shù)
是凹函數(shù).
②如果對于任意,
都有
,則稱函數(shù)
是凸函數(shù).
(1)若函數(shù)(
且
)是凹函數(shù),試寫出實數(shù)
的取值范圍;(直接寫出結果,無需證明);
(2)判斷函數(shù)是凹函數(shù)還是凸函數(shù),并加以證明;
(3)若對任意的且
,
,試證明存在
,使
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com