【題目】已知函數(shù)(
為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)證明:當(dāng)時(shí),方程
在區(qū)間
上只有一個(gè)解;
(Ⅱ)設(shè),其中
.若
恒成立,求
的取值范圍.
【答案】(Ⅰ)證明見(jiàn)解析(Ⅱ)
【解析】
(1)設(shè),
,求出
,判斷函數(shù)
在區(qū)間
上單調(diào)遞增,由
,
,利用零點(diǎn)存在性定理即可證出.
(2)設(shè),
,求出
,由(1)不妨
的零點(diǎn)為
,從而可判斷
在區(qū)間
上單調(diào)情況,進(jìn)而可得出函數(shù)
的最小值為
,由
,得
,代入
可得
,由
即可求解.
(Ⅰ)設(shè),
.
,當(dāng)
時(shí),
,
因此函數(shù)在區(qū)間
上單調(diào)遞增.
且,
.
所以在區(qū)間
上只有一個(gè)零點(diǎn),
方程在區(qū)間
上只有一個(gè)解.
(Ⅱ)設(shè),
,
定義域?yàn)?/span>
,
,
令,則
,
由(Ⅰ)知,在區(qū)間
上單調(diào)遞增,且只有一個(gè)零點(diǎn),
不妨設(shè)的零點(diǎn)為
,則
,
所以,與
在區(qū)間
上的情況如下:
- | 0 | + | |
所以,函數(shù)的最小值為
,
,
由,得
,所以
.
依題意,即
,解得
.所以,
的取值范圍為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線
與曲線
交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式,此事引起了國(guó)際數(shù)學(xué)界的轟動(dòng)許多專(zhuān)家認(rèn)為這是數(shù)論研究中的一項(xiàng)重大突破世界主流媒體都對(duì)這項(xiàng)重要成果作了報(bào)道并給予了高度評(píng)價(jià),印度媒體甚至稱(chēng)贊張益唐為“中國(guó)的拉馬努金”.孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問(wèn)題之一,可以這樣描述:存在無(wú)窮多個(gè)素?cái)?shù),使得
是素?cái)?shù),素?cái)?shù)對(duì)
稱(chēng)為孿生素?cái)?shù).在不超過(guò)20的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微博橙子輔導(dǎo)用簡(jiǎn)單隨機(jī)抽樣方法抽取了100名同學(xué),對(duì)其社會(huì)實(shí)踐次數(shù)進(jìn)行調(diào)查,結(jié)果如下:
若將社會(huì)實(shí)踐次數(shù)不低于12次的學(xué)生稱(chēng)為“社會(huì)實(shí)踐標(biāo)兵”.
(1)將頻率視為概率,估計(jì)該校1600名學(xué)生中“社會(huì)實(shí)踐標(biāo)兵”有多少人?
(2)從已抽取的8名“社會(huì)實(shí)踐標(biāo)兵”中隨機(jī)抽取4位同學(xué)參加社會(huì)實(shí)踐表彰活動(dòng).
(。┰O(shè)A為事件"抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)”,求事件A發(fā)生的概率;
(ⅱ)用X表示抽取的“社會(huì)實(shí)踐標(biāo)兵”中男生的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)是焦距的2倍,且過(guò)點(diǎn)
.
(1)求橢圓C的方程;
(2)設(shè)為橢圓C上的動(dòng)點(diǎn),F為橢圓C的右焦點(diǎn),A、B分別為橢圓C的左、右頂點(diǎn),點(diǎn)
滿足
.
①證明:為定值;
②設(shè)Q是直線上的動(dòng)點(diǎn),直線AQ、BQ分別另交橢圓C于M、N兩點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為
.
(I)求橢圓的方程;
(II)設(shè)與圓相切的直線
交橢圓
于
,
兩點(diǎn)(
為坐標(biāo)原點(diǎn)),
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),曲線的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)把曲線和直線
化為直角坐標(biāo)方程;
(2)過(guò)原點(diǎn)引一條射線分別交曲線
和直線
于
,
兩點(diǎn),射線上另有一點(diǎn)
滿足
,求點(diǎn)
的軌跡方程(寫(xiě)成直角坐標(biāo)形式的普通方程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長(zhǎng)度為2,求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年,新型冠狀病毒引發(fā)的疫情牽動(dòng)著億萬(wàn)人的心,八方馳援戰(zhàn)疫情,眾志成城克時(shí)難,社會(huì)各界支援湖北共抗新型冠狀病毒肺炎,重慶某醫(yī)院派出3名醫(yī)生,2名護(hù)士支援湖北,現(xiàn)從這5人中任選2人定點(diǎn)支援湖北某醫(yī)院,則恰有1名醫(yī)生和1名護(hù)士被選中的概率為( )
A.0.7B.0.4C.0.6D.0.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com