日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C的方程為 ,點(diǎn)A、B分別為其左、右頂點(diǎn),點(diǎn)F1、F2分別為其左、右焦點(diǎn),以點(diǎn)A為圓心,AF1為半徑作圓A;以點(diǎn)B為圓心,OB為半徑作圓B;若直線 被圓A和圓B截得的弦長(zhǎng)之比為 ;

          (1)求橢圓C的離心率;
          (2)己知a=7,問(wèn)是否存在點(diǎn)P,使得過(guò)P點(diǎn)有無(wú)數(shù)條直線被圓A和圓B截得的弦長(zhǎng)之比為 ;若存在,請(qǐng)求出所有的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          【答案】
          (1)解:由 ,得直線l的傾斜角為150°,

          則點(diǎn)A到直線l的距離 ,

          故直線l被圓A截得的弦長(zhǎng)為 ,

          直線l被圓B截得的弦長(zhǎng)為

          據(jù)題意有: ,即

          化簡(jiǎn)得:16e2﹣32e+7=0,

          解得: ,又橢圓的離心率e∈(0,1);

          故橢圓C的離心率為


          (2)解:假設(shè)存在,設(shè)P點(diǎn)坐標(biāo)為(m,n),過(guò)P點(diǎn)的直線為L(zhǎng);

          當(dāng)直線L的斜率不存在時(shí),直線L不能被兩圓同時(shí)所截;

          故可設(shè)直線L的方程為y﹣n=k(x﹣m),

          則點(diǎn)A(﹣7,0)到直線L的距離 ,

          由(1)有 ,得 =

          故直線L被圓A截得的弦長(zhǎng)為 ,

          則點(diǎn)B(7,0)到直線L的距離 ,rB=7,

          故直線L被圓B截得的弦長(zhǎng)為 ,

          據(jù)題意有: ,即有16(rA2﹣D12)=9(rB2﹣D22),整理得4D1=3D2,

          = ,

          關(guān)于k的方程有無(wú)窮多解,

          故有: ,

          故所求點(diǎn)P坐標(biāo)為(﹣1,0)或(﹣49,0).


          【解析】(1)根據(jù)直線l的斜率可知直線l的傾斜角,進(jìn)而可求得點(diǎn)A到直線l的距離,進(jìn)而表示出直線l被圓A截得的弦長(zhǎng)和被圓B截得的弦長(zhǎng),利用弦長(zhǎng)之比為 ,求得a和c的關(guān)系,進(jìn)而求得e.(2)假設(shè)存在,設(shè)P點(diǎn)坐標(biāo)為(m,n),過(guò)P點(diǎn)的直線為L(zhǎng),當(dāng)直線L的斜率不存在時(shí),直線L不能被兩圓同時(shí)所截,故可知直線L的斜率一定存在,進(jìn)而可設(shè)直線方程,求得點(diǎn)A(﹣7,0)到直線L的距離,根據(jù)(1)的離心率求得圓A的半徑,同樣可求得圓B的半徑,則可求得直線L被兩圓截得的弦長(zhǎng),根據(jù)他們的比為 建立等式,整理成關(guān)于k的一元二次方程,方程有無(wú)窮多解,進(jìn)而求得m和n,則點(diǎn)P的坐標(biāo)可得.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知等比數(shù)列{an}的首項(xiàng)為8,Sn是其前n項(xiàng)的和,某同學(xué)經(jīng)計(jì)算得S2=20,S3=36,S4=65,后來(lái)該同學(xué)發(fā)現(xiàn)了其中一個(gè)數(shù)算錯(cuò)了,則該數(shù)為(
          A.S1
          B.S2
          C.S3
          D.S4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)討論的單調(diào)性;

          (2)當(dāng)時(shí),若方程有兩個(gè)相異實(shí)根,且,證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)= , .

          (1)若函數(shù)處取得極值,求的值,并判斷處取得極大值還是極小值.

          (2)若上恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線,直線過(guò)拋物線焦點(diǎn),且與拋物線交于, 兩點(diǎn),以線段為直徑的圓與拋物線準(zhǔn)線的位置關(guān)系是( )

          A. 相離 B. 相交 C. 相切 D. 不確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(﹣4,0)、B(4,0).

          (1)若A、B為橢圓的焦點(diǎn),且橢圓經(jīng)過(guò)C、D兩點(diǎn),求該橢圓的方程;
          (2)若A、B為雙曲線的焦點(diǎn),且雙曲線經(jīng)過(guò)C、D兩點(diǎn),求雙曲線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:正三棱柱中, , , 為棱的中點(diǎn).

          )求證: 平面

          )求證:平面平面

          )求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)平面向量 =(cosx,sinx), =(cosx+2 ,sinx), =(sinα,cosα),x∈R.
          (1)若 ,求cos(2x+2α)的值;
          (2)若α=0,求函數(shù)f(x)= 的最大值,并求出相應(yīng)的x值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知雙曲線 =1(b∈N*)的兩個(gè)焦點(diǎn)F1 , F2 , 點(diǎn)P是雙曲線上一點(diǎn),|OP|<5,|PF1|,|F1F2|,|PF2|成等比數(shù)列,則雙曲線的離心率為(
          A.2
          B.3
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案