日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (08年黃岡市模擬理) (12分)在五棱錐P―ABCDE中,PA=AB=AE=2a, PB=PE=2a, BC=DE=a, ∠EAB=∠ABC=∠DEA=90°.

          (1)求證:PA平面ABCDE;

          (2)求二面角A―PD―C的大小;

          (3)在線段BC上是否存在一點(diǎn)Q,使Q到平面PDE的距離為.

           

          解析:(1)由PA⊥AE,PA⊥AB得PA⊥平面ABCD    ……4分

          (2)過(guò)C作CM⊥AD,MN⊥PD于N,連CN,則∠CNM為二面角A―PD―C的一個(gè)平面角,……5分

          CD=

          ,所求二面角的大小為……8分

          (3)假設(shè)存在Q點(diǎn),過(guò)Q作QF∥AB交AE于F,由ED∥AB得QF∥平面PDE,

          由DE⊥平面PAE,所以平面PAE⊥平面PED,作FH⊥PE交PE于H,則FH⊥平

          面PED,在Rt△EFH中,F(xiàn)H=,∠FEH=45°,所以FE=,所以Q是

          BC中點(diǎn)…………12分

          解法二(2)建立如圖坐標(biāo)系,設(shè)A(0,0,0),P(0,0,2a),D(a,2a,0),C(2a,a,0),

          E(0,2a,0),設(shè)平面PAD的法向量為,

          所以,

          同理平面PDC的法向量,

          故所求二面角的大小為

          (3),,可求得平面PDE的法向量

          設(shè)Q(2a,x,0)點(diǎn)Q到平面PED距離為d,

          ,由0<x<a得

          即Q為BC中點(diǎn)

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (08年黃岡市模擬理) (12分) 在鈍角三角形ABC中,AC=2, AB=1, 其面積為,O是其外心,設(shè),.

          (1)求;

          (2)設(shè)s+t, 求s、t的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (08年黃岡市模擬理)(12分)某種彩票在一年內(nèi)中獎(jiǎng)號(hào)碼的首位數(shù)字(如023的0)構(gòu)成一個(gè)分布,數(shù)字0,1,2,…,9出現(xiàn)的概率滿(mǎn)足=f(x)=a(a為常數(shù)),現(xiàn)在從這些中獎(jiǎng)號(hào)碼中任取一個(gè),記其首位數(shù)字為.

          (1)求的分布列;

          (2)求的期望.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (08年黃岡市模擬理) (13分)動(dòng)圓P與定圓O1:x2+y2+4x-5=0和O2:x2+y2-4x+3=0均外切,設(shè)P點(diǎn)的軌跡為C.

          (1)求C的方程;

          (2)過(guò)點(diǎn)A(3,0)作直線交曲線C于P、Q兩點(diǎn),交y軸于M點(diǎn),若,當(dāng)時(shí),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (08年黃岡市模擬理)

          (14分)設(shè).求證:

          (1)對(duì)任意自然數(shù)n,方程內(nèi)有且只有一個(gè)實(shí)數(shù)根;

          (2)設(shè)是方程的根,求證: .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案