日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】袋內(nèi)裝有6個(gè)球,每個(gè)球上都記有從16的一個(gè)號(hào)碼,設(shè)號(hào)碼為n的球重克,這些球等可能地從袋里取出(不受重量、號(hào)碼的影響).

          (1)如果任意取出1個(gè)球,求其重量大于號(hào)碼數(shù)的概率;

          (2)如果不放回地任意取出2個(gè)球,求它們重量相等的概率.

          【答案】(1) (2)

          【解析】試題分析:(1)任意取出1球,共有6種等可能的方法,要求其重量大于號(hào)碼數(shù)的概率,我們只要根據(jù)號(hào)碼為n的球的重量為n2-6n+12克,構(gòu)造關(guān)于n的不等式,解不等式即可得到滿足條件的基本事件的個(gè)數(shù),代入古典概型公式即可求解.

          (2)我們要先計(jì)算出不放回地任意取出2球的基本事件總個(gè)數(shù),然后根據(jù)重量相等構(gòu)造方程解方程求出滿足條件的基本事件的個(gè)數(shù),代入古典概型計(jì)算公式即可求解.

          試題解析:(1)由題意,任意取出1球,共有6種等可能的方法。

          由不等式

          所以,于是所求概率為

          (2)從6個(gè)球中任意取出2個(gè)球,共有15種等可能的方法,列舉如下:

          (1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)

          (3,6)(4,5)(4,6)(5,6)

          設(shè)第n號(hào)與第m號(hào)的兩個(gè)球的重量相等,

          則有

          ,故所求概率為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用 (基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)是與上一年度車輛發(fā)生道路交通安全違法行為或者道路交通事故的情況相聯(lián)系的.交強(qiáng)險(xiǎn)第二年價(jià)格計(jì)算公式具體如下:交強(qiáng)險(xiǎn)最終保費(fèi)基準(zhǔn)保費(fèi)浮動(dòng)比率).發(fā)生交通事故的次數(shù)越多,出險(xiǎn)次數(shù)的就越多,費(fèi)率也就越髙,具體浮動(dòng)情況如下表:

          某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,為此搜集并整理了100輛這一品牌普通6座以下私家車一年內(nèi)的出險(xiǎn)次數(shù),得到下面的柱狀圖:

          已知小明家里有一輛該品牌普通6座以下私家車且需要續(xù)保,續(xù)保費(fèi)用為.

          1為事件的估計(jì)值;

          2的平均估計(jì)值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量平行.

          1)求A;

          2)若,b2,求ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
          (1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
          (2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
          (3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=lnx,g(x)= +bx(a≠0)
          (Ⅰ)若a=﹣2時(shí),函數(shù)h(x)=f(x)﹣g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
          (Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)φ(x)=e2x+bex , x∈[0,ln2],求函數(shù)φ(x)的最小值;
          (Ⅲ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列四個(gè)命題: ①x0∈R,ln(x02+1)<0;
          x>2,x2>2x;
          α,β∈R,sin(α﹣β)=sin α﹣sin β;
          ④若q是¬p成立的必要不充分條件,則¬q是p成立的充分不必要條件.
          其中真命題的個(gè)數(shù)為(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知菱形 ABCD 中,對(duì)角線 AC 與 BD 相交于一點(diǎn) O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結(jié) AC'.

          (Ⅰ)求證:平面 AOC'⊥平面 ABD;
          (Ⅱ)若點(diǎn) C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了調(diào)查中小學(xué)課外使用互聯(lián)網(wǎng)的情況,教育部向華東、華北、華南和西部地區(qū)60所中小學(xué)發(fā)出問卷份, 名學(xué)生參加了問卷調(diào)查,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如圖).

          (1)要從這名中小學(xué)中用分層抽樣的方法抽取名中小學(xué)生進(jìn)一步調(diào)查,則在(小時(shí))時(shí)間段內(nèi)應(yīng)抽出的人數(shù)是多少?

          (2)若希望的中小學(xué)生每天使用互聯(lián)網(wǎng)時(shí)間不少于(小時(shí)),請(qǐng)估計(jì)的值,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四面體ABCD的頂點(diǎn)都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,過AD作相互垂直的平面α、β,若平面α、β截球O所得截面分別為圓M、N,則(
          A.MN的長(zhǎng)度是定值
          B.MN長(zhǎng)度的最小值是2
          C.圓M面積的最小值是2π
          D.圓M、N的面積和是定值8π

          查看答案和解析>>

          同步練習(xí)冊(cè)答案