日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù),其中
          (1)討論在其定義域上的單調(diào)性;
          (2)當(dāng)時,求取得最大值和最小值時的的值.

          (1)內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;(2)所以當(dāng)時,處取得最小值;當(dāng)時,處同時取得最小只;當(dāng)時,處取得最小值.

          解析試題分析:(1)對原函數(shù)進(jìn)行求導(dǎo),,令,解得,當(dāng);從而得出,當(dāng)時,.故內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.(2)依據(jù)第(1)題,對進(jìn)行討論,①當(dāng)時,,由(1)知,上單調(diào)遞增,所以處分別取得最小值和最大值.②當(dāng)時,.由(1)知,上單調(diào)遞增,在上單調(diào)遞減,因此處取得最大值.又,所以當(dāng)時,處取得最小值;當(dāng)時,處同時取得最小只;當(dāng)時,處取得最小值.
          (1)的定義域為,.令,得,所以.當(dāng);當(dāng)時,.故內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.
          因為,所以.
          ①當(dāng)時,,由(1)知,上單調(diào)遞增,所以處分別取得最小值和最大值.②當(dāng)時,.由(1)知,上單調(diào)遞增,在上單調(diào)遞減,因此處取得最大值.又,所以當(dāng)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          學(xué);虬嗉壟e行活動,通常需要張貼海報進(jìn)行宣傳,F(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要求版心面積為128dm2 ,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計海報的尺寸才能
          使四周空白面積最?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè),
          (1)若處有極值,求a;
          (2)若上為增函數(shù),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),其中,且曲線在點(diǎn)處的切線垂直于.
          (1)求的值;
          (2)求函數(shù)的單調(diào)區(qū)間與極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知常數(shù),函數(shù).
          (1)討論在區(qū)間上的單調(diào)性;
          (2)若存在兩個極值點(diǎn),且,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          求下列函數(shù)的導(dǎo)數(shù):
          (1)
          (2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)求證:
          (2)若恒成立,求的最大值與的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          函數(shù)
          (1)a=0時,求f(x)最小值;
          (2)若f(x)在是單調(diào)減函數(shù),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,長度為3的線段AB的端點(diǎn)A、B分別在軸上滑動,點(diǎn)M在線段AB上,且,
          (1)若點(diǎn)M的軌跡為曲線C,求其方程;
          (2)過點(diǎn)的直線與曲線C交于不同兩點(diǎn)E、F,N是曲線上不同于E、F的動點(diǎn),求面積的最大值.

          查看答案和解析>>