日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)()
          (1)當a=2時,求在區(qū)間[e,e2]上的最大值和最小值;
          (2)如果函數(shù)、、在公共定義域D上,滿足<<,那么就稱、的“伴隨函數(shù)”.已知函數(shù),若在區(qū)間(1,+∞)上,函數(shù)、的“伴隨函數(shù)”,求a的取值范圍。

          (1)的最大值為f(e2)=4e4+lne2=2+4e4,最小值為f(e)=2e2+lne=1+2e2;
          (2)

          解析試題分析:本題主要考查導數(shù)的運算、利用導數(shù)判斷函數(shù)的單調性、利用導數(shù)求函數(shù)的最值、恒成立問題等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,對求導,判斷函數(shù)的單調性,函數(shù)遞增,則在區(qū)間2個端點處取得最大值和最小值;第二問,由新定義將題目轉化為,在(1,+∞)上恒成立,對求導,對的根進行討論,判斷函數(shù)的單調性,求出最大值,令最大值小于0,同理,對求導,求最大值,需要注意如果最大值能夠取到,則最大值小于0,若最大值取不到,則最大值小于等于0.
          (1)當a=2時,,則
          當x∈[e,e2]時,,即此時函數(shù)單調遞增,
          的最大值為f(e2)=4e4+lne2=2+4e4,最小值為f(e)=2e2+lne=1+2e2.      4分
          (2)若在區(qū)間(1,+∞)上,函數(shù)、的“伴隨函數(shù)”,
          <<,令在(1,+∞)上恒成立,在(1,+∞)上恒成立,
          因為
          ①若,由
          ,即時,在(x2,+∞)上,有,此時函數(shù)單調遞增,并且在該區(qū)間上有,不合題意.
          當x2<x1=1,即a≥1時,同理可知在區(qū)間(1,+∞)上,有,不合題意.
          ②若a≤,則有2a  1≤0,此時在區(qū)間(1,+∞)上,有p'(x)<0,此時函數(shù)p(x)單調遞減,要使p(x)<0恒成立,只需要滿足,即
          此時,        9分
          ,則h(x)在(1,+∞)上為減函數(shù),則h(x)<h(1)=,所以              11分
          即a的取值范圍是。              12分
          考點:導數(shù)的運算、利用導數(shù)判斷函數(shù)的單調性、利用導數(shù)求函數(shù)的最值、恒成立問題.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),且
          (1)求的值;
          (2)求函數(shù)的單調區(qū)間;
          (3)設函數(shù),若函數(shù)上單調遞增,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)=x3-3ax2+3x+1.
          (1)設a=2,求f(x)的單調區(qū)間;
          (2)設f(x)在區(qū)間(2,3)中至少有一個極值點,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;
          (2)若函數(shù)上的最小值為3,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)若函數(shù)的圖象切x軸于點(2,0),求a、b的值;
          (2)設函數(shù)的圖象上任意一點的切線斜率為k,試求的充要條件;
          (3)若函數(shù)的圖象上任意不同的兩點的連線的斜率小于l,求證

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)=x3-3x2+2x
          (1)在處的切線平行于直線,求點的坐標;
          (2)求過原點的切線方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),其中且m為常數(shù).
          (1)試判斷當時函數(shù)在區(qū)間上的單調性,并證明;
          (2)設函數(shù)處取得極值,求的值,并討論函數(shù)的單調性.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),其中為實數(shù).
          (1)當時,求函數(shù)在區(qū)間上的最大值和最小值;
          (2)若對一切的實數(shù),有恒成立,其中的導函數(shù),求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知某工廠生產件產品的成本為(元),
          問:(1)要使平均成本最低,應生產多少件產品?
          (2)若產品以每件500元售出,要使利潤最大,應生產多少件產品?

          查看答案和解析>>

          同步練習冊答案