(本小題14分)
已知直線L被兩平行直線:
與
:
所截線段AB的中點(diǎn)恰在直線
上,已知
圓
.
(Ⅰ)求兩平行直線與
的距離;
(Ⅱ)證明直線L與圓C恒有兩個(gè)交點(diǎn);
(Ⅲ)求直線L被圓C截得的弦長(zhǎng)最小時(shí)的方程
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)△ABC中,已知三個(gè)頂點(diǎn)的坐標(biāo)分別是A(,0),B(6,0),C(6,5),
(1)求AC邊上的高線BH所在的直線方程;
(2)求的角平分線所在直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三角形ABC的頂點(diǎn)坐標(biāo)為A(-1,5)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn).
(Ⅰ)求AB邊所在的直線方程;
(Ⅱ)求中線AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分6分)
已知直線與
的交點(diǎn)為
.
(Ⅰ)求交點(diǎn)的坐標(biāo);
(Ⅱ)求過點(diǎn)且平行于
直線
的直線方程;
(Ⅲ)求過點(diǎn)且垂直于直線
的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動(dòng)點(diǎn)
滿足
。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)
的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知O(0,0)、A(,0)為平面內(nèi)兩定點(diǎn),動(dòng)點(diǎn)P滿足|PO|+|PA|=2.
(I)求動(dòng)點(diǎn)P的軌跡方程;
(II)設(shè)直線與(I)中點(diǎn)P的軌跡交于B、C兩點(diǎn).求△ABC的最大面積及此時(shí)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com