日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓E),它的上,下頂點(diǎn)分別為AB,左,右焦點(diǎn)分別為,,若四邊形為正方形,且面積為2.

          (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;

          (Ⅱ)設(shè)存在斜率不為零且平行的兩條直線,,它們與橢圓E分別交于點(diǎn)CD,M,N,且四邊形是菱形,求出該菱形周長(zhǎng)的最大值.

          【答案】(Ⅰ);(Ⅱ).

          【解析】

          (Ⅰ)由題意可得,解出即可;

          (Ⅱ)設(shè)的方程為的方程為,聯(lián)立直線與橢圓方程并消元得韋達(dá)定理的結(jié)論,根據(jù)弦長(zhǎng)公式可求得,,由四邊形為菱形可得,可得,再根據(jù)基本不等式即可求出最值.

          解:(Ⅰ)∵四邊形為正方形,且面積為2,

          ,

          解得

          ∴橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)設(shè)的方程為,

          設(shè)的方程為,,

          聯(lián)立可得

          可得,化簡(jiǎn)可得,①

          ,,

          ,

          同理可得

          ∵四邊形為菱形,∴,∴,

          又∵,∴,

          關(guān)于原點(diǎn)對(duì)稱,又橢圓關(guān)于原點(diǎn)對(duì)稱,

          關(guān)于原點(diǎn)對(duì)稱,也關(guān)于原點(diǎn)對(duì)稱,

          ,,

          ∵四邊形為菱形,可得

          ,即

          ,

          可得,

          化簡(jiǎn)可得,

          ∴菱形的周長(zhǎng)為

          ,

          當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,

          此時(shí),滿足①,

          ∴菱形的周長(zhǎng)的最大值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知過點(diǎn)且斜率為1的直線與曲線是參數(shù))交于兩點(diǎn),與直線交于點(diǎn).

          1)求曲線的普通方程與直線的直角坐標(biāo)方程;

          2)若的中點(diǎn)為,比較的大小關(guān)系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直三棱柱ABCA1B1C1中,∠ACB90°,∠ABC45°,ABAA12,PCC1的中點(diǎn).

          1)證明:AB1⊥平面PA1B

          2)設(shè)EBC的中點(diǎn),線段AB1上是否存在一點(diǎn)Q,使得QE∥平面A1ACC1?若存在,求四棱錐QAA1C1C的體積;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,過作直線與橢圓交于,兩點(diǎn),的周長(zhǎng)為8

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)問:的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒有,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知.

          1)若,求處的切線與兩坐標(biāo)軸圍成的三角形的面積;

          2)若上的最大值為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是拋物線上三個(gè)不同的點(diǎn),且.

          (Ⅰ)若,求點(diǎn)的坐標(biāo);

          (Ⅱ)若拋物線上存在點(diǎn),使得線段總被直線平分,求點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】足球運(yùn)動(dòng)是一項(xiàng)古老的體育活動(dòng),眾多的資料表明,中國(guó)古代足球的出現(xiàn)比歐洲早,歷史更為悠久,如圖,現(xiàn)代比賽用足球是由正五邊形與正六邊形構(gòu)成的共32個(gè)面的多面體,著名數(shù)學(xué)家歐拉證明了凸多面體的面數(shù)(F),頂點(diǎn)數(shù)(V),棱數(shù)(E)滿足F+V-E=2,那么,足球有______.個(gè)正六邊形的面,若正六邊形的邊長(zhǎng)為,則足球的直徑為______.cm(結(jié)果保留整數(shù))(參考數(shù)據(jù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中,的對(duì)邊分別為,且成等差數(shù)列.

          1)求的值;

          2)求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線過點(diǎn),拋物線處的切線交軸于點(diǎn),過點(diǎn)作直線與拋物線交于不同的兩點(diǎn)、,直線、、分別與拋物線的準(zhǔn)線交于點(diǎn)、,其中為坐標(biāo)原點(diǎn).

          )求拋物線的方程及其準(zhǔn)線方程,并求出點(diǎn)的坐標(biāo);

          )求證:為線段的中點(diǎn).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案