日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在三棱錐中,平面,,分別是的中點,,交于,交于點,連接。

          (Ⅰ)求證:
          (Ⅱ)求二面角的余弦值。
          (Ⅰ)見解析 (Ⅱ)
          解法一 (Ⅰ)在中,分別是的中點,則的重心,
          同理,所以,因此
          又因為的中位線,所以.
          (Ⅱ)解法1 因為 ,所以,又
          所以平面,平面
          為二面角的平面角,
          不妨設由三角形知識可得
          由余弦定理得
          解法2分別以所在直線為軸建立空間直角坐標系,不妨設
          設平面的法向量為,則
          ,所以,令
          同理求得平面的一個法向量為,
          因此
          由圖形可知二面角的余弦值為
          解法二(Ⅰ)證明:因為分別是的中點,
          所以,,所以
          平面,平面,
          所以∥平面,
          平面,平面平面,
          所以,
          ,
          所以.
          (Ⅱ)解法一:在△中, ,,
          所以,即,因為平面,所以
          ,所以平面,由(Ⅰ)知,
          所以平面,又平面,所以,同理可得
          所以為二面角的平面角,設,連接,
          中,由勾股定理得,,
          中,由勾股定理得,,
          為△的重心,所以
          同理 ,
          在△中,由余弦定理得,
          即二面角的余弦值為.
          解法二:在△中,,,
          所以,又平面,所以兩兩垂直,
          為坐標原點,分別以所在直線為軸,軸,軸,建立如圖所示的空間直角坐標系,設,則,,,,,,所以,,,,
          設平面的一個法向量為,
          ,,

          ,得.
          設平面的一個法向量為
          ,,

          ,得.所以
          因為二面角為鈍角,所以二面角的余弦值為.
          【考點定位】本題考查了空間直線的位置關系的判定和二面角的求法,考查了空間想象能力、推理論證能力和運算能力。第一問主要涉及平面幾何的圖形性質,中點形成的平行線是?键c之一,論證較為簡單。第二問有兩種方法可以解決,因圖形結構的簡潔性,推理論證較為簡單,而利用空間向量運算求解二面角就相對復雜了.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,在中,,上的高,沿折起,使.
          (Ⅰ)證明:平面⊥平面;
          (Ⅱ)若,求三棱錐的表面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖1,在等腰直角三角形中,,,分別是上的點,,
          的中點.將沿折起,得到如圖2所示的四棱錐,其中.

          (Ⅰ) 證明:平面;
          (Ⅱ) 求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點,則在原來的正方體中(     )

          A.              B.
          C. AB與CD所成的角為    D. AB與CD相交

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,在五面體中,四邊形是正方形,平面

          (1)求異面直線所成角的余弦值;
          (2)證明:平面;
          (3)求二面角的正切值。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,在直線三棱柱ABC—A1B1C1中,AB=AC=1,∠BAC=90°,異面直線A1B與B1C1所成的角為60°.

          (Ⅰ)求證:AC⊥A1B;
          (Ⅱ)設D是BB1的中點,求DC1與平面A1BC1所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,空間四邊形的對棱、的角,且,平行于的截面分別交、、、、

          (1)求證:四邊形為平行四邊形;
          (2)的何處時截面的面積最大?最大面積是多少?

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F(xiàn)為ED邊的中點,CD=BD=2AC=2

          (1)求證:CF∥面ABE;
          (2)求證:面ABE⊥平面BDE:
          (3)求三棱錐F—ABE的體積。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          三棱錐中,是底面,且這四個頂點都在半徑為2的球面上,則這個三棱錐的三個側棱長的和的最大值為(   )
          A.16B.C.D.32

          查看答案和解析>>

          同步練習冊答案