【題目】已知函數(shù),
(1)當(dāng)時,求不等式
的解集;
(2)若不等式的解集為空集,求實(shí)數(shù)
的取值范圍.
【答案】(1);(2)
【解析】試題分析:(1)根據(jù)絕對值內(nèi)的零點(diǎn)去掉絕對值,將函數(shù)寫成分段形式,分段解不等式即可;(2)根據(jù)題意將問題轉(zhuǎn)化為2≤f(x)min,由絕對值三角不等式得到函數(shù)最值,求得參數(shù)范圍即可。
解析:
(1)當(dāng)a=3時,f(x)=|x﹣3|+|x﹣1|,
即有f(x)=
不等式f(x)≤4即為 或
或
.
即有0≤x<1或3≤x≤4或1≤x<3,則為0≤x≤4,
則解集為[0,4];
(2)依題意知,f(x)=|x﹣a|+|x﹣1|≥2恒成立,
∴2≤f(x)min;
由絕對值三角不等式得:f(x)=|x﹣a|+|x﹣1|≥|(x﹣a)+(1﹣x)|=|1﹣a|,
即f(x)min=|1﹣a|,
∴|1﹣a|≥2,即a﹣1≥2或a﹣1≤﹣2,
解得a≥3或a≤﹣1.
∴實(shí)數(shù)a的取值范圍是[3,+∞)∪(﹣∞,﹣1].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了解轄區(qū)住戶中離退休老人每天的平均戶外“活動時間”,從轄區(qū)住戶的離退休老人中隨機(jī)抽取了100位老人進(jìn)行調(diào)查,獲得了每人每天的平均戶外“活動時間”(單位:小時),活動時間按照、
、…、
從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.
(1)求圖中的值;
(2)估計該社區(qū)住戶中離退休老人每天的平均戶外“活動時間”的中位數(shù);
(3)在、
這兩組中采用分層抽樣抽取7人,再從這7人中隨機(jī)抽取2人,求抽取的兩人恰好都在同一個組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓
的參數(shù)方程為
(
為參數(shù),
是大于0的常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求圓的極坐標(biāo)方程和圓
的直角坐標(biāo)方程;
(2)分別記直線:
,
與圓
、圓
的異于原點(diǎn)的焦點(diǎn)為
,
,若圓
與圓
外切,試求實(shí)數(shù)
的值及線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面
是矩形,側(cè)棱
底面
,
分別是
的中點(diǎn),
,
.
(Ⅰ)求證: 平面
;
(Ⅱ)求與平面
所成角的正弦值;
(Ⅲ)在棱上是否存在一點(diǎn)
,使得平面
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線y=t與曲線C:y=x(x﹣3)2的三個交點(diǎn)分別為A(a,t),B(b,t),C(c,t),且a<b<c.現(xiàn)給出如下結(jié)論:
①abc的取值范圍是(0,4);
②a2+b2+c2為定值;③a+b+c=6
其中正確結(jié)論的為_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).
(1)求他們選擇的項(xiàng)目所屬類別互不相同的概率;
(2)記ξ為3人中選擇的項(xiàng)目屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求ξ的分布列及均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且橢圓
過點(diǎn)
,直線
過橢圓
的右焦點(diǎn)
且與橢圓
交于
兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),求證:若圓
與直線
相切,則圓
與直線
也相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)和y=g(x)在[-2,2]上的圖象如圖所示.給出下列四個命題:
①方程f[g(x)]=0有且僅有6個根;②方程g[f(x)]=0有且僅有3個根;
③方程f[f(x)]=0有且僅有7個根;④方程g[g(x)]=0有且僅有4個根.
其中正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直三棱柱中,
,
,
,點(diǎn)
,
分別是
的中點(diǎn).
(Ⅰ)求證: 平面
;
(Ⅱ)若二面角的大小為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com