日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知各項(xiàng)為正數(shù)的數(shù)列{an}滿(mǎn)足a12+a22+a32+…+an2=(4n3-n),(n∈N*).
          (Ⅰ)求數(shù)列{an}的前n項(xiàng)和Sn
          (Ⅱ)記數(shù)列{nan}的前n項(xiàng)和為T(mén)n,試用數(shù)學(xué)歸納法證明對(duì)任意n∈N*,都有Tn≤nSn
          【答案】分析:(I)因?yàn)閚≥2時(shí),(a12+a22+a32+…+an2)-(a12+a22+a32+…+an-12)=an2,從而求出an,再根據(jù)等差數(shù)列的性質(zhì)可知求出數(shù)列的首項(xiàng)與公差,根據(jù)首項(xiàng)與公差寫(xiě)出前n項(xiàng)和的公式即可;
          (II)先根據(jù)當(dāng)n=1時(shí),把n=1代入求值不等式成立;再假設(shè)n=k時(shí)關(guān)系成立,利用變形可得n=k+1時(shí)關(guān)系也成立,綜合得到對(duì)于任意n∈N*時(shí)都成立.
          解答:解:(Ⅰ)當(dāng)n=1時(shí),有a12=(4×12-1)=1,又an>0,所以 a1=1(1分)
          當(dāng)n≥2時(shí),(a12+a22+a32+…+an2)-(a12+a22+a32+…+an-12)=an2
          =(4n3-n)-[4(n-1)3-(n-1)]=[n3-(n-1)3]-
          =(n2+n2-n+n2-2n+1)-=4n2-4n+1=(2n-1)2
          所以an=2n-1,且當(dāng)n=1時(shí),a1=2×1-1=1  (3分)
          又an-a n-1=(2n-1)-[2(n-1)-1]=2,
          因此數(shù)列{an}是以1為首項(xiàng)且公差為2的等差數(shù)列,
          所以:Sn=n+n×n(n-1)×2=n2,(2分)
          證明:(Ⅱ)(1)當(dāng)n=1時(shí),T1=1×1=1,
          1×S1=1×1=1,關(guān)系成立 (1分)
          (2)假設(shè)當(dāng)n=k時(shí),關(guān)系成立,即Tk≤kSk,則
          1×1+2×a2+1+…+kak≤k3(1分) 
           那么T k+1=1×1+2×a2+…+kak+(k+1)a k+1≤k3+(k+1)(2k+1)
          =k3+2k2+3k+1<k3+3k2+3k+1=(k+1)3,即當(dāng)n=k+1時(shí)關(guān)系也成立(3分)  
          根據(jù)(1)和(2)知,關(guān)系式Tn≤nSn對(duì)任意n∈N*都成立  (1分)
          點(diǎn)評(píng):此題是一道綜合題,要求學(xué)生掌握等差數(shù)列的性質(zhì),會(huì)求等差數(shù)列的通項(xiàng)公式及前n項(xiàng)的和公式,同時(shí)要求學(xué)生掌握數(shù)學(xué)歸納法在證明題中的運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和為{Sn},首項(xiàng)為a1,且2,an,Sn成等差數(shù)列,
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)若bn=log2an,cn=
          bnan
          ,求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知各項(xiàng)為正數(shù)的數(shù)列{an}滿(mǎn)足a12+a22+a32+…+an2=
          13
          (4n3-n),(n∈N*).
          (Ⅰ)求數(shù)列{an}的前n項(xiàng)和Sn;
          (Ⅱ)記數(shù)列{nan}的前n項(xiàng)和為T(mén)n,試用數(shù)學(xué)歸納法證明對(duì)任意n∈N*,都有Tn≤nSn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知各項(xiàng)為正數(shù)的數(shù)列滿(mǎn)足,且的等差中項(xiàng).

          (1)求數(shù)列的通項(xiàng)公式;

          (2)若,求使成立的正整數(shù)n的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省學(xué)軍中學(xué)高三上學(xué)期理科數(shù)學(xué)期中考試試卷 題型:解答題

          已知各項(xiàng)為正數(shù)的數(shù)列的前項(xiàng)和為,且滿(mǎn)足,
          (1)求數(shù)列的通項(xiàng)公式  
          (2)令,數(shù)列的前項(xiàng)和為,若對(duì)一切恒成立,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三上學(xué)期理科數(shù)學(xué)期中考試試卷 題型:解答題

          已知各項(xiàng)為正數(shù)的數(shù)列的前項(xiàng)和為,且滿(mǎn)足,

          (1)求數(shù)列的通項(xiàng)公式  

           (2)令,數(shù)列的前項(xiàng)和為,若對(duì)一切恒成立,求的最小值.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案