日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).
          (1)若函數(shù)在點處的切線方程為,求的值;
          (2)若,函數(shù)在區(qū)間內(nèi)有唯一零點,求的取值范圍;
          (3)若對任意的,均有,求的取值范圍.

          (1),;(2);(3).

          解析試題分析:本題考查導數(shù)的運算,利用導數(shù)求切線方程、判斷函數(shù)的單調(diào)性、求函數(shù)的最值等基礎知識,考查函數(shù)思想、分類討論思想,考查綜合分析和解決問題的能力.(1)先求導,將切點的橫坐標代入到導數(shù)中,得到切線的斜率,結(jié)合已知切線的斜率可求出的值,再由切點在切線上,可求出即切點的縱坐標,然后代入的解析式即可求出的值;(2)先將代入得到解析式,求導數(shù),判斷函數(shù)的單調(diào)性,因為有唯一的零點,所以,所以解得;(3)屬于恒成立問題,通過分析題意,可以轉(zhuǎn)化為上的最大值與最小值之差,因為,所以討論的正負來判斷的正負,當時,為單調(diào)遞增函數(shù),所以,當時,需列表判斷函數(shù)的單調(diào)性和極值來決定最值的位置,這種情況中還需要討論與1的大小.
          試題解析:(1),所以,得
          ,所以,得
          (2)因為所以,
          時,,當時,
          所以上單調(diào)遞減,在上單調(diào)遞增
          ,可知在區(qū)間內(nèi)有唯一零點等價于


          (3)若對任意的,均有,等價于上的最大值與最小值之差
          (。┊時,在,上單調(diào)遞增
          ,得
          所以
          (ⅱ)當時,由


          所以,同理
          ,即

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),其中
          (1) 當時,求曲線在點處的切線方程;
          (2) 求函數(shù)的單調(diào)區(qū)間及在上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)時取得極小值.
          (1)求實數(shù)的值;
          (2)是否存在區(qū)間,使得在該區(qū)間上的值域為?若存在,求出,的值;
          若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          某風景區(qū)在一個直徑AB為100米的半圓形花園中設計一條觀光線路(如圖所示).在點A與圓
          弧上的一點C之間設計為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點C到點B設計為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)

          (1)設(弧度),將綠化帶總長度表示為的函數(shù);
          (2)試確定的值,使得綠化帶總長度最大.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)若,討論函數(shù)在區(qū)間上的單調(diào)性;
          (2)若且對任意的,都有恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)若,試確定函數(shù)的單調(diào)區(qū)間;
          (2)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)當時,求函數(shù)在點(1,1)處的切線方程;
          (2)若在y軸的左側(cè),函數(shù)的圖象恒在的導函數(shù)圖象的上方,求k的取值范圍;
          (3)當k≤-l時,求函數(shù)在[k,l]上的最小值m。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設函數(shù)fx)定義在(0,+∞)上,f(1)=0,導函數(shù),.
          (1)求的單調(diào)區(qū)間和最小值;
          (2)討論的大小關(guān)系;
          (3)是否存在x0>0,使得|gx)﹣gx0)|<對任意x>0成立?若存在,求出x0的取值范圍;若不存在請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù).
          (1)求的單調(diào)區(qū)間;
          (2)當時,求證:恒成立..

          查看答案和解析>>