日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連結(jié)DG并延長交圓于點A,作弦AB垂直EP,垂足為F.

          (Ⅰ)求證:AB為圓的直徑;

          (Ⅱ)若AC=BD,求證:AB=ED.

          【答案】(1)見解析(2)見解析

          【解析】試題分析:(1)由切割線定理得∠PDA=∠DBA,由PG=PD,得∠PGD=∠EGA,所以∠DBA=∠EGA,即B,D,F,G四點共圓,從而∠BDA=∠PFA.而AF⊥EP,所以∠PFA=90°, ∠BDA=90°(2)由AC=BD,可得DC∥AB,所以DC⊥EP,即ED為直徑.因此AB=ED.

          試題解析:證明 (1)因為PD=PG,所以∠PDG=∠PGD.由于PD為切線,故∠PDA=∠DBA,

          又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,從而∠BDA=∠PFA.

          由于AF⊥EP,所以∠PFA=90°,于是∠BDA=90°.故AB是直徑.

          (2)連結(jié)BC,DC.

          由于AB是直徑,故∠BDA=∠ACB=90°.在Rt△BDA與Rt△ACB中,AB=BA,AC=BD,

          從而Rt△BDA≌Rt△ACB.于是∠DAB=∠CBA.又因為∠DCB=∠DAB,

          所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,

          所以DC⊥EP,∠DCE為直角.于是ED為直徑.由(1)得ED=AB.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】命題p:函數(shù)y=log2(x2﹣2x)的單調(diào)增區(qū)間是[1,+∞),命題q:函數(shù)y=的值域為(0,1),下列命題是真命題的為(  )
          A.p∧q
          B.p∨q
          C.p∧(¬q)
          D.¬q

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】橢圓4x2+9y2=144內(nèi)有一點P(3,2)過點P的弦恰好以P為中點,那么這弦所在直線的方程為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè),.

          (Ⅰ)當時,求曲線處的切線的方程;

          (Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);

          (Ⅲ)如果對任意的,都有成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓E:=1(a>b>0)的焦距為2 , 且該橢圓經(jīng)過點(,).
          (Ⅰ)求橢圓E的方程;
          (Ⅱ)經(jīng)過點P(﹣2,0)分別作斜率為k1 , k2的兩條直線,兩直線分別與橢圓E交于M,N兩點,當直線MN與y軸垂直時,求k1k2的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知(4+n展開式中的倒數(shù)第三項的二項式系數(shù)為45.
          (1)求n;
          (2)求含有x3的項;
          (3)求二項式系數(shù)最大的項.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知等差數(shù)列{an}的前n項的和記為Sn . 如果a4=﹣12,a8=﹣4.
          (1)求數(shù)列{an}的通項公式;
          (2)求Sn的最小值及其相應(yīng)的n的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0),且f(x)的最小正周期為π
          (1)求函數(shù)f(x)的單調(diào)增區(qū)間;
          (2)若f( )= ,f( )= ,且α、β∈(﹣ ),求cos(α+β)的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù) (其中, ).

          (1)若函數(shù)上為增函數(shù),求實數(shù)的取值范圍;

          (2)當時,求函數(shù)上的最大值和最小值;

          (3)當時,求證:對于任意大于1的正整數(shù),都有.

          查看答案和解析>>

          同步練習冊答案