日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)求曲線處的切線方程,并證明:.

          2)當(dāng)時(shí),方程有兩個(gè)不同的實(shí)數(shù)根,證明:.

          【答案】1;證明見(jiàn)解析;(2)證明見(jiàn)解析.

          【解析】

          1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義以及點(diǎn)斜式方程可求切線方程;構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最小值即證.

          2為方程的兩根,不妨設(shè),由上單調(diào)遞增,根據(jù)零點(diǎn)存在性定理可知,存在,使,由,得,由(1)可得,,然后利用分析法即可證出.

          解:(1)因?yàn)?/span>,

          所以, 即切線方程:

          下證:,

          上單調(diào)遞增,且

          所以,遞減,在遞增,

          所以.

          所以.

          2,為方程的兩根,

          不妨設(shè),顯然上單調(diào)遞增.

          所以存在,使

          當(dāng),遞減;

          ,遞增.

          ,得,又由(1)知

          所以:

          要證:,需證:,即證:

          ,即證:.

          即:

          單調(diào)遞增,且.

          所以,,單調(diào)遞增.

          所以

          所以不等式成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列的首項(xiàng)a1=1,前n項(xiàng)和為Sn.設(shè)λk是常數(shù),若對(duì)一切正整數(shù)n,均有成立,則稱此數(shù)列為“λ~k數(shù)列.

          1)若等差數(shù)列“λ~1”數(shù)列,求λ的值;

          2)若數(shù)列數(shù)列,且an0,求數(shù)列的通項(xiàng)公式;

          3)對(duì)于給定的λ,是否存在三個(gè)不同的數(shù)列“λ~3”數(shù)列,且an≥0?若存在,求λ的取值范圍;若不存在,說(shuō)明理由,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1)若曲線處切線的斜率為,判斷函數(shù)的單調(diào)性;

          2)若函數(shù)有兩個(gè)零點(diǎn),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知是無(wú)窮數(shù)列.給出兩個(gè)性質(zhì):

          ①對(duì)于中任意兩項(xiàng),在中都存在一項(xiàng),使;

          ②對(duì)于中任意項(xiàng),在中都存在兩項(xiàng).使得

          (),判斷數(shù)列是否滿足性質(zhì)①,說(shuō)明理由;

          (),判斷數(shù)列是否同時(shí)滿足性質(zhì)①和性質(zhì)②,說(shuō)明理由;

          ()是遞增數(shù)列,且同時(shí)滿足性質(zhì)①和性質(zhì)②,證明:為等比數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)是拋物線上的兩個(gè)不同的點(diǎn),是坐標(biāo)原點(diǎn),若直線的斜率之積為,則下列結(jié)論正確的是(

          A.

          B.為直徑的圓面積的最小值為

          C.直線過(guò)拋物線的焦點(diǎn)

          D.點(diǎn)到直線的距離不大于

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了響應(yīng)綠色出行,某市推出了新能源分時(shí)租賃汽車,并對(duì)該市市民使用新能源租賃汽車的態(tài)度進(jìn)行調(diào)查,得到有關(guān)數(shù)據(jù)如下表1

          1

          愿意使用新能源租賃汽車

          不愿意使用新能源租賃汽車

          總計(jì)

          男性

          100

          300

          女性

          400

          總計(jì)

          400

          其中一款新能源分時(shí)租賃汽車的每次租車費(fèi)用由行駛里程和用車時(shí)間兩部分構(gòu)成:行駛里程按1/公里計(jì)費(fèi);用車時(shí)間不超過(guò)30分鐘時(shí),按0.15/分鐘計(jì)費(fèi);超過(guò)30分鐘時(shí),超出部分按0.20/分鐘計(jì)費(fèi).已知張先生從家到上班地點(diǎn)15公里,每天上班租用該款汽車一次,每次的用車時(shí)間均在20~60分鐘之間,由于堵車紅綠燈等因素,每次的用車時(shí)間(分鐘)是一個(gè)隨機(jī)變量.張先生記錄了100次的上班用車時(shí)間,并統(tǒng)計(jì)出在不同時(shí)間段內(nèi)的頻數(shù)如下表2

          2

          時(shí)間(分鐘)

          2030]

          30,40]

          4050]

          50,60]

          頻數(shù)

          20

          40

          30

          10

          1)請(qǐng)補(bǔ)填表1中的空缺數(shù)據(jù),并判斷是否有99.5%的把握認(rèn)為該市市民對(duì)新能源租賃汽車的使用態(tài)度與性別有關(guān);

          2)根據(jù)表2中的數(shù)據(jù),將各時(shí)間段發(fā)生的頻率視為概率,以各時(shí)間段的區(qū)間中點(diǎn)值代表該時(shí)間段的取值,試估計(jì)張先生租用一次該款汽車上班的平均用車時(shí)間;

          3)若張先生使用滴滴打車上班,則需要車費(fèi)27元,試問(wèn):張先生上班使用滴滴打車和租用該款汽車,哪一種更合算?

          附:

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,函數(shù),則下列說(shuō)法正確的是( )

          A.,則的圖象上存在唯一一對(duì)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)

          B.存在實(shí)數(shù)使得的圖象上存在兩對(duì)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)

          C.不存在實(shí)數(shù)使得的圖象上存在兩對(duì)關(guān)于軸對(duì)稱的點(diǎn)

          D.的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《周髀算經(jīng)》有這樣一個(gè)問(wèn)題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長(zhǎng)減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個(gè)節(jié)氣日影之和為七丈三尺五寸,問(wèn)立夏日影長(zhǎng)為(

          A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱臺(tái)中,底面是菱形,底面,且60°,,是棱的中點(diǎn).

          1)求證:;

          2)求直線與平面所成線面角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案