【題目】如圖,有一種游戲畫板,要求參與者用六種顏色給畫板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有( 。
A.120種B.240種C.144種D.288種
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四種說(shuō)法正確的是( )
①若和
都是定義在
上的函數(shù),則“
與
同是奇函數(shù)”是“
是偶函數(shù)”的充要條件
②命題 “”的否定是“
≤0”
③命題“若x=2,則”的逆命題是“若
,則x=2”
④命題:在
中,若
,則
;
命題:
在第一象限是增函數(shù);
則為真命題
A. ①②③④ B. ①③ C. ③④ D. ③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
底面
,底面
是直角梯形,
,
,
,
是
的中點(diǎn).
(1)求證:平面平面
;
(2)若二面角的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為
,F是橢圓E的右焦點(diǎn),直線AF的斜率為
,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】宋元時(shí)期杰出的數(shù)學(xué)家朱世杰在其數(shù)學(xué)巨著《四元玉鑒》卷中“菱草形段”第一個(gè)問(wèn)題“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,問(wèn)底子(每層三角形邊菱草束數(shù),等價(jià)于層數(shù))幾何?”中探討了“垛積術(shù)”中的落一形垛(“落一形”即是指頂上束,下一層
束,再下一層
束,……,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層菱草束數(shù)),則本問(wèn)題中三角垛底層菱草總束數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
過(guò)點(diǎn)
和點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓
相交于不同的兩點(diǎn)
,
,是否存在實(shí)數(shù)
,使得
?若存在,求出實(shí)數(shù)
;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,
分別為
的中點(diǎn),過(guò)
任作一個(gè)平面
分別與直線
相交于點(diǎn)
,則下列結(jié)論正確的是___________.①對(duì)于任意的平面
,都有直線
,
,
相交于同一點(diǎn);②存在一個(gè)平面
,使得點(diǎn)
在線段
上,點(diǎn)
在線段
的延長(zhǎng)線上; ③對(duì)于任意的平面
,都有
;④對(duì)于任意的平面
,當(dāng)
在線段
上時(shí),幾何體
的體積是一個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3(a>0,且a≠1).
(1)討論f(x)的奇偶性;
(2)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com