日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖①,在平行四邊形中,,,中點(diǎn).沿折起使平面平面,得到如圖②所示的四棱錐.

          1)求證:平面平面;

          2)求直線與平面所成角的正弦值.

          【答案】1)證明見解析(2

          【解析】

          1)利用勾股定理求得,即可由面面垂直推證線面垂直,再由線面垂直推證面面垂直;

          2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得的方向向量,以及平面的法向量,即可容易求得線面角.

          1)證明:在圖①中連接,

          因?yàn)?/span>,,中點(diǎn),

          故可得為等邊三角形,故可得

          中,由余弦定理可得

          ,解得.

          ,故可得.

          ,

          在圖②中,平面平面,且平面平面,

          平面

          平面,

          平面平面.

          2)以為坐標(biāo)原點(diǎn),軸,軸,

          過點(diǎn)垂直于平面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,

          ,,,,

          故可得.

          設(shè)平面的一個法向量,

          ,

          ,令,

          可得

          設(shè)直線與平面所成角的正弦值為,

          .

          直線與平面所成角的正弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)討論上的單調(diào)性;

          2)若,求不等式的解集.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2020年春節(jié)期間,因新冠肺炎疫情防控工作需要,兩社區(qū)需要招募義務(wù)宣傳員,現(xiàn)有、、、、六位大學(xué)生和甲、乙、丙三位黨員教師志愿參加,現(xiàn)將他們分成兩個小組分別派往、兩社區(qū)開展疫情防控宣傳工作,要求每個社區(qū)都至少安排1位黨員教師及3位大學(xué)生,且由于工作原因只能派往社區(qū),則不同的選派方案種數(shù)為(

          A.60B.90

          C.120D.150

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年1月1日,濟(jì)南軌道交通號線試運(yùn)行,濟(jì)南軌道交通集團(tuán)面向廣大市民開展“參觀體驗(yàn),征求意見”活動,市民可以通過濟(jì)南地鐵APP搶票,小陳搶到了三張體驗(yàn)票,準(zhǔn)備從四位朋友小王,小張,小劉,小李中隨機(jī)選擇兩位與自己一起去參加體驗(yàn)活動,則小王被選中的概率為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓)和圓,已知圓將橢圓的長軸三等分,橢圓右焦點(diǎn)到右準(zhǔn)線的距離為,橢圓的下頂點(diǎn)為,過坐標(biāo)原點(diǎn)且與坐標(biāo)軸不重合的任意直線與圓相交于點(diǎn)、

          (1)求橢圓的方程;

          (2)若直線、分別與橢圓相交于另一個交點(diǎn)為點(diǎn)、.

          ①求證:直線經(jīng)過一定點(diǎn);

          ②試問:是否存在以為圓心,為半徑的圓,使得直線和直線都與圓相交?若存在,請求出實(shí)數(shù)的范圍;若不存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,平行四邊形中,,,中點(diǎn).將沿折起,使平面平面,得到如圖②所示的四棱錐.

          1)求證:平面平面;

          2)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知橢圓的左右頂點(diǎn)分別是,離心率為,設(shè)點(diǎn),連接交橢圓于點(diǎn),坐標(biāo)原點(diǎn)是

          (1)證明: ;

          2設(shè)三角形的面積為,四邊形的面積為, 的最小值為1,求橢圓的標(biāo)準(zhǔn)方程

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)fx)=sinωxω0)的圖象與其對稱軸在y軸右側(cè)的交點(diǎn)從左到右依次記為A1,A2A3,…,An,…,在點(diǎn)列{An}中存在三個不同的點(diǎn)Ak、Al、Ap,使得△AkAlAp是等腰直角三角形,將滿足上述條件的ω值從小到大組成的數(shù)記為ωn,則ω6_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面為梯形,,若棱,兩兩垂直,長度分別為1,2,2,且向量夾角的余弦值為.

          1)求的長度;

          2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案