日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知A、B、C是長軸長為4的橢圓上的三點(diǎn),點(diǎn)A是長軸的一個(gè)頂點(diǎn),BC過橢圓中心O,如圖,且
          AC
          BC
          =0
          ,|BC|=2|AC|.
          (1)求橢圓的方程;
          (2)如果橢圓上兩點(diǎn)P、Q使∠PCQ的平分線垂直AO,則總存在實(shí)數(shù)λ,使
          PQ
          AB
          ,請(qǐng)給出證明.
          (1)以O(shè)為原點(diǎn),OA所在的直線為x軸建立如圖所示的直角坐標(biāo)系,
          則A(2,0),設(shè)所求橢圓的方程為:x2+
          y2
          b2
          =4(0<b<1),由橢圓的對(duì)稱性知|OC|=|OB|,
          AC
          BC
          =0得AC⊥BC,
          ∵|BC|=2|AC|,
          ∴|OC|=|AC|,
          ∴△AOC是等腰直角三角形,
          ∴C的坐標(biāo)為(1,1),
          ∵C點(diǎn)在橢圓上
          1+
          1
          b2
          =4,
          ∴b2=
          1
          3
          ,所求的橢圓方程為x2+3y2=4.
          (Ⅱ)由于∠PCQ的平分線垂直O(jiān)A(即垂直于x軸),
          不妨設(shè)直線PC的斜率為k,則直線QC的斜率為-k,
          直線PC的方程為:y=k(x-1)+1,直線QC的方程為y=-k(x-1)+1,
          y=k(x-1)+1
          x2+3y2-4=0
          得:(1+3k2)x2-6k(k-1)x+3k2-6k-1=0(*)
          ∵點(diǎn)C(1,1)在橢圓上,
          ∴x=1是方程(*)的一個(gè)根,則其另一根為
          3k2-6k-1
          1+3k2
          ,設(shè)P(xP,yP),?Q(xQ,yQ),xP=
          3k2-6k-1
          1+3k2
          ,同理xQ=
          3k2+6k-1
          1+3k2

          kPQ=
          yp-yQ
          xP-xQ
          =
          k(xP+xQ)-2k
          xP-xQ
          =
          k(
          3k2-6k-1
          1+3k2
          +
          3k2+6k-1
          1+3k2
          )-2k
          3k2-6k-1
          1+3k2
          -
          3k2+6k-1
          1+3k2
          =
          1
          3

          而由對(duì)稱性知B(-1,-1),又A(2,0),
          ∴kAB=
          1
          3
          ,
          ∴kPQ=kAB
          AB
          PQ
          共線,且
          AB
          ≠0,即存在實(shí)數(shù)λ,使
          PQ
          AB
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          與圓外切,且與y軸相切的動(dòng)圓圓心的軌跡方程為         .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,橢圓中心在坐標(biāo)原點(diǎn),F為左焦點(diǎn),當(dāng)時(shí),其離心率為,此類橢圓被稱為“黃金橢圓”.類比“黃金橢圓”,可推算出”黃金雙曲線”的離心率e等于       

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          點(diǎn)P到x軸的距離比它到點(diǎn)(0,1)的距離小1,稱點(diǎn)P的軌跡為曲線C,點(diǎn)M為直線l:y=-m(m>0)上任意一點(diǎn),過點(diǎn)M作曲線C的兩條切線MA,MB,切點(diǎn)分別為A,B.
          (1)求曲線C的軌跡方程;
          (2)當(dāng)M的坐標(biāo)為(0,-l)時(shí),求過M,A,B三點(diǎn)的圓的標(biāo)準(zhǔn)方程,并判斷直線l與此圓的位置關(guān)系;
          (3)當(dāng)m變化時(shí),試探究直線l上是否存在點(diǎn)M,使MA⊥MB?若存在,有幾個(gè)這樣的點(diǎn),若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)F在x軸正半軸上,傾斜角為銳角的直線l過F點(diǎn),設(shè)直線l與拋物線交于A、B兩點(diǎn),與拋物線的準(zhǔn)線交于M點(diǎn),
          MF
          FB
          (λ>0)
          (1)若λ=1,求直線l斜率
          (2)若點(diǎn)A、B在x軸上的射影分別為A1,B1且|
          B1F
          |,|
          OF
          |,2|
          A1F
          |成等差數(shù)列求λ的值
          (3)設(shè)已知拋物線為C1:y2=x,將其繞頂點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點(diǎn)N.已知點(diǎn)P是拋物線C1′上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C′1于T,S,兩點(diǎn),若過N,P兩點(diǎn)的直線l垂直于TS,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且準(zhǔn)線方程為x=-1.
          (1)求拋物線C的標(biāo)準(zhǔn)方程;
          (2)過拋物線C焦點(diǎn)的直線l交拋物線于A,B兩點(diǎn),如果要同時(shí)滿足:①|(zhì)AB|≤8;②直線l與橢圓3x2+2y2=2有公共點(diǎn),試確定直線l傾斜角的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          直線y=x+2與雙曲線
          x2
          m
          -
          y2
          3
          =1有兩個(gè)公共點(diǎn),則m的
          取值范圍是(  )
          A.m>-1且m≠3B.0<m<7且m≠3C.m>7D.m<0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系xOy中,橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦距為2,且過點(diǎn)(
          2
          ,
          6
          2
          )

          (1)求橢圓E的方程;
          (2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M.
          (。┰O(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值;
          (ⅱ)設(shè)過點(diǎn)M垂直于PB的直線為m.求證:直線m過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C與雙曲線
          x2
          2
          -
          y2
          6
          =1
          有相同焦點(diǎn)F1和F2,過F1的直線交橢圓于A、B兩點(diǎn),△ABF2的周長為8
          3
          .若直線y=t(t>0)與橢圓C交于不同的兩點(diǎn)E、F,以線段EF為直徑作圓M.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若圓M與x軸相切,求圓M被直線x-
          3
          y+1=0
          截得的線段長.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案