日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知點(diǎn)D(0,-2),過點(diǎn)D作拋物線C1:x2=2py(p∈[1,4]的切線l,切點(diǎn)A在第二象限.
          (1)求切點(diǎn)A的縱坐標(biāo);
          (2)若離心率為數(shù)學(xué)公式的橢圓數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>c)恰好經(jīng)過A點(diǎn),設(shè)切線l交橢圓的另一點(diǎn)為B,若設(shè)切線l,直線OA,OB的斜率為k,k1,k2,①試用斜率k表示k1+k2②當(dāng)k1+k2取得最大值時(shí)求此時(shí)橢圓的方程.

          解:(1)設(shè)切點(diǎn)A(x0,y0),依題意則有y0=,
          由切線l的斜率為k=,得l的方程為y=x-
          又點(diǎn)D(0,-2)在l上,
          =2,即點(diǎn)A的縱坐標(biāo)y0=2;
          (2)依題意可設(shè)直線AB方程為:y=kx-2=-

          由(1)可得A(-2,2),將A代入可得b=,故橢圓的方程可簡化為;
          聯(lián)立直線AB與橢圓的方程,消去y得:(4k4+k2)x2-16k3x-16=0
          設(shè)A(x1,y1),B(x2,y2),則x1+x2=,x1x2=
          ①k1+k2=+=2k-2×=2k+2k3
          ②∵k=[1,4]),∴k∈[-2,-1],
          ∵f(k)=2k+2k3在[-2,-1]上為單調(diào)遞增函數(shù),故當(dāng)k=-1時(shí),k1+k2取到最大值,此時(shí)P=4,
          故橢圓的方程為
          分析:(1)設(shè)切點(diǎn)A的坐標(biāo),得切線的方程,根據(jù)點(diǎn)D(0,-2)在l上,從而可求切點(diǎn)A的縱坐標(biāo);
          (2)先根據(jù)及A(-2,2),化簡橢圓方程,設(shè)直線AB方程橢圓的方程,消去y,利用韋達(dá)定理可求斜率,利用函數(shù)的單調(diào)性,可求最值,從而可得橢圓的方程.
          點(diǎn)評(píng):本題主要考查拋物線的切線方程,考查直線與橢圓的位置關(guān)系及利用函數(shù)的單調(diào)性求最值,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•黃州區(qū)模擬)如圖,已知點(diǎn)D(0,-2),過點(diǎn)D作拋物線C1:x2=2py(p∈[1,4]的切線l,切點(diǎn)A在第二象限.
          (1)求切點(diǎn)A的縱坐標(biāo);
          (2)若離心率為
          3
          2
          的橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>c)恰好經(jīng)過A點(diǎn),設(shè)切線l交橢圓的另一點(diǎn)為B,若設(shè)切線l,直線OA,OB的斜率為k,k1,k2,①試用斜率k表示k1+k2②當(dāng)k1+k2取得最大值時(shí)求此時(shí)橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省八校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,已知點(diǎn)D(0,-2),過點(diǎn)D作拋物線的切線l,切點(diǎn)A在第二象限。

          (1)求切點(diǎn)A的縱坐標(biāo);

          (2)若離心率為的橢圓恰好經(jīng)過A點(diǎn),設(shè)切線l交橢圓的另一點(diǎn)為B,若設(shè)切線l,直線OA,OB的斜率為k,,①試用斜率k表示②當(dāng)取得最大值時(shí)求此時(shí)橢圓的方程。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013屆浙江省溫州市高二下學(xué)期期中考試文科數(shù)學(xué)(解析版) 題型:解答題

          如圖,已知點(diǎn)D(0,-2),過點(diǎn)D作拋物線的切線,切點(diǎn)A在第二象限。

          (1)求切點(diǎn)A的縱坐標(biāo);

          (2)若離心率為的橢圓恰好經(jīng)過A點(diǎn),設(shè)切線l交橢圓的另一點(diǎn)為B,若設(shè)切線,直線OA,OB的斜率為,,①試用斜率k表示②當(dāng)取得最大值時(shí)求此時(shí)橢圓的方程。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:湖北省模擬題 題型:解答題

          如圖,已知點(diǎn)D(0,-2),過點(diǎn)D作拋物線C1:x2=2py (p ∈[1 ,4] )的切線l ,切點(diǎn)A在第二象限。
          (1)求切點(diǎn)A的縱坐標(biāo);
          (2)若離心率為的橢圓恰好經(jīng)過A點(diǎn),設(shè)切線l交橢圓的另一點(diǎn)為B,若設(shè)切線l,直線OA,OB的斜率為k,k1,k2,
          ①試用斜率k表示k1+k2;
          ②當(dāng)k1+k2取得最大值時(shí)求此時(shí)橢圓的方程。

          查看答案和解析>>

          同步練習(xí)冊答案