日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 求動圓圓心M的軌跡方程:與⊙C1:(x+3)2+y2=9外切,且與⊙C2:(x-3)2+y2=1內(nèi)切。

          答案:
          解析:

          解:∵⊙M與⊙C1外切,且與⊙C2內(nèi)切

          ∴|MC1|=r+3,|MC2|=r-1,|MC1|-|MC2|=4

          ∴點M的軌跡是以C1C2為焦點的雙曲線的右支,且有:

          a=2,c=3,b2=c2a2=5

          ∴所求雙曲線方程為:

          (x≥2)


          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          如圖所示,一動圓與圓x2+y2+6x+5=0外切,同時與圓x2+y2-6x-91=0內(nèi)切,求動圓圓心M的軌跡方程,并說明它是什么樣的曲線.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知動圓M和圓C1:(x+1)2+y2=9內(nèi)切,并和圓C2:(x-1)2+y2=1外切.
          (1)求動圓圓心M的軌跡方程;
          (2)過圓C1和圓C2的圓心分別作直線交(1)中曲線于點B、D和A、C,且AC⊥BD,垂足為P(x0,y0),設(shè)點E(-2,-1),求|PE|的最大值;
          (3)求四邊形ABCD面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2006•靜安區(qū)二模)已知動圓過定點F(
          1
          2
          ,0)
          ,且與定直線l:x=-
          1
          2
          相切.
          (1)求動圓圓心M的軌跡方程;
          (2)設(shè)點O為坐標原點,P、Q兩點在動點M的軌跡上,且滿足OP⊥OQ,OP=OQ,求等腰直角三角形POQ的面積;
          (3)設(shè)一直線l與動點M的軌跡交于R、S兩點,若
          OR
          OS
          =-1且2
          2
          ≤|RS|<4
          14
          ,試求該直線l的傾斜角的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2006•靜安區(qū)二模)已知動圓過定點F(
          1
          2
          ,0)
          ,且與定直線l:x=-
          1
          2
          相切.
          (1)求動圓圓心M的軌跡方程;
          (2)設(shè)點O為坐標原點,P、Q兩點在動點M的軌跡上,且滿足OP⊥OQ,OP=OQ,求等腰直角三角形POQ的面積;
          (3)設(shè)過點F(
          1
          2
          ,0)
          的直線l與動點M的軌跡交于R、S相異兩點,試求△ROS面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•洛陽一模)過定點A(1,0)的動圓M與定圓B:(x+1)2+y2=8內(nèi)切(圓心為B).
          (1)求動圓圓心M的軌跡方程;
          (2)設(shè)點N(0,1),是否存在直線l交M的軌跡于P,Q兩點,使得△NPQ的垂心恰為點A.若存在,求出該直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案