日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長均相等,的中點(diǎn).、分別是、上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足.當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中正確的是______ (填上所有正確命題的序號(hào)).

          ①平面平面;

          ②三棱錐的體積為定值;

          可能為直角三角形;

          ④平面與平面所成的銳二面角范圍為

          【答案】①②④

          【解析】

          ,得到線段一定過正方形的中心,由平面,可得平面平面;

          的面積不變,到平面的距離不變,可得三棱錐的體積為定值;

          利用反證法思想說明不可能為直角三角形;

          平面與平面平行時(shí)所成角為0,當(dāng)重合,重合,平面與平面所成的銳二面角最大.

          如圖:

          當(dāng)、分別是上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,則線段一定過正方形的中心,而平面,平面,可得平面平面,故①正確;

          當(dāng)、分別是上的動(dòng)點(diǎn)(含端點(diǎn)),過點(diǎn)邊上的高的長等于的長,所以的面積不變,由于平面,故點(diǎn)到平面的距離等于點(diǎn)到平面的距離,則點(diǎn)到平面的距離為定值,故三棱錐的體積為定值;所以②正確;

          可得: ,若為直角三角形,則一定是以為直角的直角三角形,但的最大值為,而此時(shí),的長都大于,故不可能為直角三角形,所以③不正確;

          當(dāng)、分別是、的中點(diǎn),平面與平面平行,所成角為0

          當(dāng)重合,重合,平面與平面所成銳二面角最大;

          延長,連接,則平面平面,由于的中點(diǎn),,所以,且,故在中,中點(diǎn),中點(diǎn),

          中,中點(diǎn),中點(diǎn),故,由于平面,所以平面,則, 所以平面與平面所成銳二面角最大為,故④正確;

          故答案為①②④

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

          [10.5,14.5)  2  [14.5,18.5)  4 [18.5,22.5)  9 [22.5,26.5)  18

          [26.5,30.5)  11  [30.5,34.5)  12 [34.5,38.5)  8  [38.5,42.5)  2

          根據(jù)樣本的頻率分布估計(jì),數(shù)據(jù)落在[30.5,42.5)內(nèi)的概率約是(  )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各隨機(jī)抽取了100件產(chǎn)品作為樣本來檢測一項(xiàng)質(zhì)量指標(biāo)值,若產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖是乙套設(shè)備的樣本的頻率分布直方圖.

          表甲套設(shè)備的樣本的頻數(shù)分布表

          質(zhì)量指標(biāo)值

          頻數(shù)

          2

          10

          36

          38

          12

          2

          (1)將頻率視為概率.若乙套設(shè)備生產(chǎn)了10000件產(chǎn)品,則其中的合格品約有多少件?

          (2)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān).

          甲套設(shè)備

          乙套設(shè)備

          合計(jì)

          合格品

          不合格品

          合計(jì)

          附表及公式:,其中;

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:

          女性用戶

          分值區(qū)間

          [50,60

          [6070

          [70,80

          [8090

          [90,100]

          頻數(shù)

          20

          40

          80

          50

          10

          男性用戶

          分值區(qū)間

          [50,60

          [60,70

          [70,80

          [8090

          [90,100]

          頻數(shù)

          45

          75

          90

          60

          30

          (1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評(píng)分的波動(dòng)大。ú挥(jì)算具體值,給出結(jié)論即可);

          (2)把評(píng)分不低于70分的用戶稱為評(píng)分良好用戶,能否有的把握認(rèn)為評(píng)分良好用戶與性別有關(guān)?

          參考附表:

          參考公式,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓:的離心率為,且經(jīng)過點(diǎn).

          1)求橢圓的方程;

          2)直線與橢圓相交于,兩點(diǎn),若,求為坐標(biāo)原點(diǎn))面積的最大值及此時(shí)直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱ABCA1B1C1中,D,E分別為BCAC的中點(diǎn),AB=BC

          求證:(1A1B1∥平面DEC1;

          2BEC1E

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx=x2﹣2|x|

          1)將函數(shù)fx)寫成分段函數(shù);

          2)判斷函數(shù)的奇偶性,并畫出函數(shù)圖象.

          3)若函數(shù)在[a, +∞)上單調(diào),求a的范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=x|x-a|+bxa,bR).

          (Ⅰ)當(dāng)b=-1時(shí),函數(shù)fx)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的值;

          (Ⅱ)當(dāng)b=1時(shí),

          ①若對(duì)于任意x∈[1,3],恒有fx)≤2x2,求a的取值范圍;

          ②若a≥2,求函數(shù)fx)在區(qū)間[0,2]上的最大值ga).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知奇函數(shù)

          1)求b的值,并求出函數(shù)的定義域

          2)若存在區(qū)間,使得時(shí),的取值范圍為,求的取值范圍

          查看答案和解析>>

          同步練習(xí)冊(cè)答案