日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖:已知直三棱柱的側(cè)棱長(zhǎng)為2a,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2a,E,D分別是BC,的中點(diǎn).

          (1)求證:BC//平面;

          (2)求點(diǎn)E到平面的距離;

          (3)求二面角的大。

          答案:
          解析:

          (1)證明:由題意知,

          ,

          ∴BC//面,

          (2)∵∴點(diǎn)C到面的距離等于點(diǎn)E到面的距離.

          中點(diǎn)F,連CF交于G.

          .∴四邊形是正方形,

          又F、D分別是中點(diǎn),∴,

          又∵,故,于是,

          ,∴CG為點(diǎn)E到平面的距離.

          由射影定理知

          (3)取的中點(diǎn)H,連,則

          為直棱柱.

          ,過(guò)H作于M,連.則

          為二面角的平面角.

          ,

          又∵.∴

          .即二面角為arctan3.


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點(diǎn)D在AB上.
          (1)若D是AB中點(diǎn),求證:AC1∥平面B1CD;
          (2)當(dāng)
          BD
          AB
          =
          1
          5
          時(shí),求二面角B-CD-B1的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知直三棱柱ABC-A1B1C1中,AC=BC=2,M、N分別是棱CC1、AB的中點(diǎn).求證:平面MCN⊥平面ABB1A1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•渭南二模)如圖,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,E是棱CC1上的動(dòng)點(diǎn),F(xiàn)是AB的中點(diǎn),AC=BC=2,AA1=4.
          (1)當(dāng)E是棱CC1的中點(diǎn)時(shí),求證:CF∥平面AEB1;
          (2)在棱CC1上是否存在點(diǎn)E,使得二面角A-EB1-B的大小是45°?若存在,求出CE的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•莒縣模擬)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CCl、AB中點(diǎn).
          (I)求證:CF⊥BB1;
          (Ⅱ)求四棱錐A-ECBB1的體積;
          (Ⅲ)證明:直線CF∥平面AEBl

          查看答案和解析>>

          同步練習(xí)冊(cè)答案