【題目】設(shè)函數(shù),且
的圖像在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
.
(1)求的值;
(2)已知在區(qū)間
上的最小值為1,求a的值.
【答案】(1);(2)
【解析】
(1)先對(duì)三角函數(shù)式進(jìn)行恒等變換,變換成正弦型函數(shù),再由已知,確定ω的值.
(2)根據(jù)第一步求得的函數(shù),求得函數(shù)的最小值,再依據(jù)在區(qū)間[,
]上的最小值為
,求得a的值.
(1)函數(shù)f(x)cos2ωx+sinωxcosωx+a
cos2ωx
sin2ωx
a=sin(2ωx
)
a,
∵f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為,
∴2ω,解得ω
.
(2)由(1)得f(x)=sin(x)
a,
∵x∈[,
],
∴x∈[
,
],
∴,
從而函數(shù)f(x)在[,
]的最小值為
,
又由題設(shè)f(x)在區(qū)間[,
]上的最小值為1,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表:
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測(cè)值為多少?
參考公式:線性回歸方程,其中
=
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為
,過(guò)點(diǎn)
且斜率為
的直線
交曲線
于
兩點(diǎn),交圓
于
兩點(diǎn)(
兩點(diǎn)相鄰).
(Ⅰ)若,當(dāng)
時(shí),求
的取值范圍;
(Ⅱ)過(guò)兩點(diǎn)分別作曲線
的切線
,兩切線交于點(diǎn)
,求
與
面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某船在海面處測(cè)得燈塔
在北偏東
方向,與
相距
海里,測(cè)得燈塔
在北偏西
方向,與
相距
海里,船由
向正北方向航行到
處,測(cè)得燈塔
在南偏西
方向,這時(shí)燈塔
與
相距多少海里?
在
的什么方向?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
為邊長(zhǎng)為2的菱形,
,
,面
面
,點(diǎn)
為棱
的中點(diǎn).
(1)在棱上是否存在一點(diǎn)
,使得
面
,并說(shuō)明理由;
(2)當(dāng)二面角的余弦值為
時(shí),求直線
與平面
所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知四邊形是直角梯形,
,
,其中
是
上的一點(diǎn),四邊形
是菱形,滿足
,沿
將
折起,使
(1)求證:平面平面
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點(diǎn)為M,
(1)求過(guò)點(diǎn)M且到點(diǎn)P(0,4)的距離為2的直線l的方程;
(2)求過(guò)點(diǎn)M且與直線l3:x+3y+1=0平行的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為
,直線
:
,直線
:
.以極點(diǎn)
為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,
的直角坐標(biāo)方程以及曲線
的參數(shù)方程;
(2)已知直線與曲線
交于
,
兩點(diǎn),直線
與曲線
交于
,
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形是矩形,
是坐標(biāo)原點(diǎn),
、
、
、
按逆時(shí)針排列,
的坐標(biāo)是
,
.
(1)求點(diǎn)的坐標(biāo);
(2)求所在直線的方程;
(3)求的外接圓方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com