日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,P是正四面體V-ABC的面VBC上一點(diǎn),點(diǎn)P到平面ABC距離與到點(diǎn)V的距離相等,則動點(diǎn)P的軌跡是( )

          A. 直線 B. 拋物線

          C. 離心率為的橢圓 D. 離心率為3的雙曲線

          【答案】C

          【解析】分析:由題設(shè)條件將點(diǎn)P到平面ABC距離與到點(diǎn)V的距離相等轉(zhuǎn)化成在面VBC中點(diǎn)P到V的距離與到定直線BC的距離比是一個(gè)常數(shù),依據(jù)圓錐曲線的第二定義判斷出其軌跡的形狀.

          詳解:正四面體V﹣ABC面VBC不垂直面ABC,過P作PD面ABC于D,過D作DHBC于H,連接PH,

          可得BC面DPH,所以BCPH,故PHD為二面角V﹣BC﹣A的平面角令其為θ

          Rt△PGH中,|PD|:|PH|=sinθ(θ為V﹣BC﹣A的二面角的大。

          又點(diǎn)P到平面ABC距離與到點(diǎn)V的距離相等,即|PV|=|PD|

          ∴|PV|:|PH|=sinθ<1,即在平面VBC中,點(diǎn)P到定點(diǎn)V的距離與定直線BC的距離之比是一個(gè)常數(shù)sinθ,

          又在正四面體V﹣ABC,V﹣BC﹣A的二面角的大小θ有:sinθ=<1,

          由橢圓定義知P點(diǎn)軌跡為橢圓在面SBC內(nèi)的一部分.

          故答案為:C.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對任意正整數(shù)n,都有an= +2成立.
          (1)記bn=log2an , 求數(shù)列{bn}的通項(xiàng)公式;
          (2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),x∈(b﹣3,2b)是奇函數(shù),

          (1)求a,b的值;

          (2)若f(x)是區(qū)間(b﹣3,2b)上的減函數(shù)且f(m﹣1)+f(2m+1)>0,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知復(fù)數(shù)z=+(a25a-6)i(a∈R).試求實(shí)數(shù)a分別為什么值時(shí),z分別為(1)實(shí)數(shù)?(2)虛數(shù)?(3)純虛數(shù)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)=|x﹣1|+|x+1|.
          (1)求f(x)≤x+2的解集;
          (2)若不等式f(x)≥ 對任意實(shí)數(shù)a≠0恒成立,求實(shí)數(shù)x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,且過點(diǎn).

          (1)求橢圓的方程;

          (2)若過點(diǎn)且斜率為k的直線l與橢圓相交于不同的兩點(diǎn)A,B,試問在x軸上是否存在點(diǎn),使是與無關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)p:f(x)=ex+lnx+2x2+mx+1在(0,+∞)上單調(diào)遞增,q:m≥﹣5,則p是q的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是邊長為2的等邊三角形,D為AB中點(diǎn).

          (1)求證:BC1∥平面A1CD;
          (2)若四邊形BCC1B1是正方形,且A1D= ,求直線A1D與平面CBB1C1所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個(gè)點(diǎn)P,使得過P點(diǎn)作圓C的兩條切線互相垂直,則r=;設(shè)EF是直線l上的一條線段,若對于圓C上的任意一點(diǎn)Q,∠EQF≥ ,則|EF|的最小值=

          查看答案和解析>>

          同步練習(xí)冊答案