日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (1)討論函數(shù)上的單調(diào)性;
          (2)當(dāng)時(shí),曲線上總存在相異兩點(diǎn),,,使得曲線在、處的切線互相平行,求證:

          (1)討論函數(shù)的單調(diào)性,我們可先求其導(dǎo)數(shù),則不等式的解集區(qū)間就是函數(shù)的單調(diào)增區(qū)間,不等式的解集區(qū)間就是函數(shù)的單調(diào)減區(qū)間;(2)題設(shè)問(wèn)題實(shí)際上就是已知
          時(shí),由(1)知化簡(jiǎn)變形得,要證明的是,利用基本不等式,這樣有,故小于的最小值,而上是增函數(shù)(可用導(dǎo)數(shù)或用增函數(shù)的定義證明),于是有,從而,解得

          解析試題分析:
          (1)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6a/1/1lc0w2.png" style="vertical-align:middle;" />.
          ,
          ,解得
          ,∴, ∴當(dāng)時(shí),;當(dāng)時(shí),
          上單調(diào)遞減,在上單調(diào)遞增.    6分
          (2)由題意得,當(dāng)時(shí),)
               ∴
           整理得
           所以上單調(diào)遞減,所以上的最大值為        12分
          考點(diǎn):(1)導(dǎo)數(shù)與函數(shù)的單調(diào)性;(2)導(dǎo)數(shù)與切線斜率,基本不等式與函數(shù)的最值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=ex+2x2—3x
          (1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
          (2) 當(dāng)x ≥1時(shí),若關(guān)于x的不等式f(x)≥ax恒成立,求實(shí)數(shù)a的取值范圍;
          (3)求證函數(shù)f(x)在區(qū)間[0,1)上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時(shí)相應(yīng)x的近似值(誤差不超過(guò)0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)在區(qū)間上為單調(diào)增函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù) 
          (1)當(dāng)在點(diǎn)處的切線方程是y=x+ln2時(shí),求a的值.
          (2)當(dāng)的單調(diào)遞增區(qū)間是(1,5)時(shí),求a的取值集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d).若曲線y=f(x)和曲線y=g(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
          (1)求a,b,c,d的值;
          (2)若x≥-2時(shí),f(x)≤kg(x),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù).
          (1)求曲線在點(diǎn)處的切線方程;
          (2)直線為曲線的切線,且經(jīng)過(guò)原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)處的切線的斜率為.
          (1)求實(shí)數(shù)的值及函數(shù)的最大值;
          (2)證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)
          (1)當(dāng)時(shí),試用含的式子表示,并討論的單調(diào)區(qū)間;
          (2)若有零點(diǎn),,且對(duì)函數(shù)定義域內(nèi)一切滿足的實(shí)數(shù)
          ①求的表達(dá)式;
          ②當(dāng)時(shí),求函數(shù)的圖像與函數(shù)的圖像的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù).
          (1)試判斷函數(shù)的單調(diào)性;  
          (2)設(shè),求上的最大值;
          (3)試證明:對(duì)任意,不等式都成立(其中是自然對(duì)數(shù)的底數(shù)).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案