日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)處的切線的斜率為.
          (1)求實(shí)數(shù)的值及函數(shù)的最大值;
          (2)證明:

          (1),不存在;(2)參考解析

          解析試題分析:(1)由函數(shù)處的切線的斜率為,通過求導(dǎo)以及將x=1代入導(dǎo)函數(shù)即可得到的值.根據(jù)的對(duì)函數(shù)求導(dǎo),由定義域的范圍即可得到導(dǎo)函數(shù)的正負(fù),從而可得函數(shù)的單調(diào)性.
          (2)需證明,由題意可得=1.即可構(gòu)造.只需令.即可得到.所以只需證明單調(diào)遞減即可.由題意可得結(jié)論成立.
          (1)由已知可得函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a1/7/ycfkr3.png" style="vertical-align:middle;" />

                                                                (2分)


          是單調(diào)遞增       
           的最大值不存在                              (6分)
          (2)由(1)令,則
          ,
          ,當(dāng)且僅當(dāng)時(shí)等號(hào)成立
                                                 



          考點(diǎn):1.函數(shù)的導(dǎo)數(shù).2.函數(shù)的最值問題.3.構(gòu)建新的函數(shù)的創(chuàng)新思維.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,把邊長為10的正六邊形紙板剪去相同的六個(gè)角,做成一個(gè)底面為正六邊形的無蓋六棱柱盒子,設(shè)其高為h,體積為V(不計(jì)接縫).
          (1)求出體積V與高h(yuǎn)的函數(shù)關(guān)系式并指出其定義域;
          (2)問當(dāng)為多少時(shí),體積V最大?最大值是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)定義在上,,導(dǎo)函數(shù),
          (1)求的單調(diào)區(qū)間和最小值;
          (2)討論的大小關(guān)系;
          (3)是否存在,使得對(duì)任意成立?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)討論函數(shù)上的單調(diào)性;
          (2)當(dāng)時(shí),曲線上總存在相異兩點(diǎn),,使得曲線在、處的切線互相平行,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),其中.
          (1)求證:函數(shù)在點(diǎn)處的切線與總有兩個(gè)不同的公共點(diǎn);
          (2)若函數(shù)在區(qū)間上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),).
          (Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處切線的方程;
          (Ⅱ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅲ)當(dāng)時(shí),恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)).
          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
          (2)函數(shù)在定義域內(nèi)是否存在零點(diǎn)?若存在,請(qǐng)指出有幾個(gè)零點(diǎn);若不存在,請(qǐng)說明理由;
          (3)若對(duì)任意恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),,其中m∈R.
          (1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
          (2)設(shè)函數(shù) 若對(duì)任意大于等于2的實(shí)數(shù)x1,總存在唯一的小于2的實(shí)數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知
          (1)若,求的極大值點(diǎn);
          (2)若存在單調(diào)遞減區(qū)間,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案