如圖1,矩形中,
,
,
、
分別為
、
邊上的點(diǎn),且
,
,將
沿
折起至
位置(如圖2所示),連結(jié)
、
、
,其中
.
(Ⅰ)求證:平面
;
(Ⅱ)求直線與平面
所成角的正弦值.
(Ⅰ)詳見(jiàn)解析;(Ⅱ) .
解析試題分析:(Ⅰ)三角形和三角形
中,各邊長(zhǎng)度確定,故可利用勾股定理證明垂直關(guān)系
,進(jìn)而由線面垂直的判定定理可證明
平面
;(Ⅱ)方法一(向量法):根據(jù)題意,以
為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,再表示出相關(guān)點(diǎn)的坐標(biāo),再求面
的法向量和直線
的方向向量,其夾角余弦值的絕對(duì)值即直線和平面所成角的正弦值;方法二(綜合法):過(guò)點(diǎn)
作
于
,則易證
平面
,所以
為直線
與平面
所成的角,進(jìn)而在
求角.
試題解析:(Ⅰ)由翻折不變性可知,,
, 在
中,
,所以
,在圖
中,易得
,
在中,
,所以
,又
,
平面
,
平面
,所以
平面
.
(Ⅱ)方法一:以為原點(diǎn),建立空間直角坐標(biāo)系
如圖所示,則
,
,
,
,所以
,
,
, 設(shè)平面
的法向量為
,則
,即
,解得
,令
,得
,設(shè)直線
與平面
所成角為
,則
.
所以直線與平面
所成角的正弦值為
.
方法二:過(guò)點(diǎn)作
于
,由(Ⅰ)知
平面
,而
平面
,所以
,又
,
平面
,
平面
,所以
平面
,所以
為直線
與平面
所成的角. 在
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
棱長(zhǎng)為2的正方體中,E為
的中點(diǎn).
(1)求證:;
(2)求異面直線AE與所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面
是邊長(zhǎng)為
的正方形,
,且
點(diǎn)滿足
.
(1)證明:平面
.
(2)在線段上是否存在點(diǎn)
,使得
平面
?若存在,確定點(diǎn)
的位置,若不存在請(qǐng)說(shuō)明理由 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在空間直角坐標(biāo)系O-xyz中,正四棱錐P-ABCD的側(cè)棱長(zhǎng)與底邊長(zhǎng)都為,點(diǎn)M,N分別在PA,BD上,且
.
(1)求證:MN⊥AD;
(2)求MN與平面PAD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知、
、
為不在同一直線上的三點(diǎn),且
,
.
(1)求證:平面//平面
;
(2)若平面
,且
,
,
,求證:
平面
;
(3)在(2)的條件下,設(shè)點(diǎn)為
上的動(dòng)點(diǎn),求當(dāng)
取得最小值時(shí)
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面四邊形ABCD中,已知,
,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD
平面BDC,設(shè)點(diǎn)F為棱AD的中點(diǎn).
(1)求證:DC平面ABC;
(2)求直線與平面ACD所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com